zbMATH — the first resource for mathematics

On superconductivity in the three-band two-dimensional repulsive Hubbard model. (English) Zbl 0875.82059
Theor. Math. Phys. 105, No. 1, 1307-1318 (1995); published in Teor. Mat. Fiz. 105, No. 1, 149-162 (1995).

82D55 Statistical mechanical studies of superconductors
Full Text: DOI
[1] V. N. Popov,On the Type of Cooper Pairing in High-Temperature Superconductivity. CERN Preprint TH-5653/90 (1990).
[2] V. N. Popov,Antiferromagnetism and Superconductivity in the Hubbard Model with Repulsive Interaction. LOMI Preprint E-3-90, Leningrad (1990).
[3] V. N. Popov,Phys. Lett.,A161, 387 (1992).
[4] C. Malyshev and V. N. Popov,Phys. Lett.,A175, 69 (1993).
[5] V. N. Popov,Magnetic and Superconductive States in the Repulsive Hubbard Model. Preprint ESI-31, Vienna (1993). · Zbl 0907.58072
[6] C. Malyshev and V. N. Popov,Antiferromagnetic and Superconductive States in the Three-Band Two-Dimensional Repulsive Hubbard Model. POMI Preprint E-6-92, St. Petersburg (1993). · Zbl 0848.60099
[7] C. Malyshev and V. N. Popov,Three-Band Hubbard Model and High Temperature Superconductivity. Preprint ESI-77, Vienna (1994). · Zbl 0848.60099
[8] J. E. Hirsch and S. Tang,Phys. Rev. Lett.,62, 591 (1989). · doi:10.1103/PhysRevLett.62.591
[9] G. Dopf, A. Muramatsu, and W. Hanke,Europhys. Lett.,17, 559 (1992). · doi:10.1209/0295-5075/17/6/014
[10] L. Van Hove,Phys. Rev.,89, 1189 (1953). · Zbl 0050.23605 · doi:10.1103/PhysRev.89.1189
[11] I. E. Dzyaloshinskii,Sov. Phys. JETP.,66, 848 (1987).
[12] R. S. Markievicz,Int. J. Mod. Phys.,B5, 2073 (1991).
[13] V. J. Emery,Phys. Rev. Lett.,58, 2794 (1987). · doi:10.1103/PhysRevLett.58.2794
[14] A. A. Abrikosov, L. P. Gor’kov, and I. E. Dzyaloshinskii,Methods of Quantum Field Theory in Statistical Physics [in Russian], Fizmatgiz, Moscow (1962).
[15] V. N. Popov,Functional Integrals and Collective Excitations, Cambridge University Press (1990).
[16] A. V. Chubukov,Phys. Rev.,B48, 1097 (1993-II).
[17] C. Malyshev and V. N. Popov,Zap. Nauch. Semin. POMI,209, 194–228 (1994).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.