zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Robust memoryless $H\sb \infty$ controller design for linear time-delay systems with norm-bounded time-varying uncertainty. (English) Zbl 0875.93102

34K35Functional-differential equations connected with control problems
Full Text: DOI
[1] Choi, H. H.; Chung, M. J.: Memoryless H$\infty $controller design for linear systems with delayed state and control. Automatica 31, 917-919 (1995) · Zbl 0829.93021
[2] Doyle, J. C.; Glover, K.; Khargonekar, P. P.; Francis, B. A.: State-space solutions to standard H2 and H$\infty $control problems. IEEE trans. Autom. control 34, 831-847 (1989) · Zbl 0698.93031
[3] Glover, K.; Doyle, J. C.: State-space formulae for all stabilizing controllers that satisfy an h\infty-norm bound and relations to risk sensitivity. Syst. control lett. 11, 167-172 (1988) · Zbl 0671.93029
[4] Gu, K.: H$\infty $control of systems under norm bounded uncertainties in all system matrices. IEEE trans. Autom. control 39, 1320-1322 (1994) · Zbl 0812.93029
[5] Lee, J. H.; Kim, S. W.; Kwon, W. H.: Memoryless H$\infty $controllers for state delayed systems. IEEE trans. Autom. control 39, 159-162 (1994) · Zbl 0796.93026
[6] Petersen, I. R.: Disturbance attenuation and H$\infty $optimization: a design method based on the algebraic Riccati equation. IEEE trans. Autom. control 32, 427-429 (1987) · Zbl 0626.93063
[7] Petersen, I. R.: A stabilization algorithm for a class of uncertain linear systems. Syst. control lett. 8, 351-357 (1987) · Zbl 0618.93056
[8] Van Dooren, P.: A generalized eigenvalue approach for solving Riccati equation. SIAM J. Sci. statist. Comput. 2, 121 (1981) · Zbl 0463.65024
[9] Xie, L.; De Souza, C. E.: Robust H$\infty $control for linear systems with norm-bounded time-varying uncertainty. IEEE trans. Autom. control 37, 1188-1191 (1992) · Zbl 0764.93027
[10] Zhou, K.; Khargonekar, P. P.: An algebraic Riccati equation to H$\infty $optimization. Syst. control lett. 11, 85-91 (1988) · Zbl 0666.93025