Yuan, Lisong Robust analysis and synthesis of linear time-delay systems with norm-bounded time-varying uncertainty. (English) Zbl 0875.93110 Syst. Control Lett. 28, No. 5, 281-289 (1996). Summary: The problems of robust analysis and synthesis of systems with state-delay and norm-bounded time-varying parameter uncertainty are studied. It is shown that these problems are equivalent to the \(H_{\infty}\) analysis and synthesis problems of an auxiliary system, which is independent of the time-delay and the uncertainty in the system. The necessary and sufficient conditions for the equivalence are developed. Thus any standard \(H_{\infty}\) analysis and synthesis method can be used to solve this problem. Cited in 3 Documents MSC: 93B36 \(H^\infty\)-control 34K35 Control problems for functional-differential equations Keywords:Uncertain system; Time-delay system; Robust control; Uncertainty document Software:LMI toolbox PDF BibTeX XML Cite \textit{L. Yuan}, Syst. Control Lett. 28, No. 5, 281--289 (1996; Zbl 0875.93110) Full Text: DOI OpenURL References: [1] Barmish, B. R., Necessary and sufficient conditions for quadratic stabilizability of an uncertain system, J. Optim. Theory Appl., 46, 399-408 (1985) · Zbl 0549.93045 [2] Boyd, S.; EI Ghaoui, L.; Feron, E.; Balakrishnam, V., Linear Matrix Inequalities in Systems and Control Theory (1994), SIAM: SIAM Philadelphia [3] Doyle, J. C.; Glove, K.; Khargonekar, P. P.; Francis, B. A., State space solution to standard \(H_2\) and \(H_∞\) problems, IEEE Trans. Automat. Control, AC-34, 831-847 (1989) · Zbl 0698.93031 [4] Francis, B. A., A Course in \(H_∞\) Control Theory (1987), Springer: Springer New York · Zbl 0624.93003 [5] Gahinet, P.; Apkarian, P., A linear matrix inequality approach to \(H_∞\) control, Int. J. Robust Nonlinear Control, 4, 421-448 (1994) · Zbl 0808.93024 [6] Gahinet, P.; Nemirovski, A.; Laub, A.; Chilali, M., The LMI control toolbox (1995), The MathWorks, Inc [7] Garcia, G.; Bernussou, J.; Arzelier, D., Robust stabilization of discrete time linear systems with norm-bounded time-varying uncertainty, Systems Control Lett., 22, 327-339 (1994) · Zbl 0820.93059 [8] Gu, K., \(H_∞\) control of systems under bounded uncertainties in all system matrices, IEEE Trans. Automat. Control, AC-39, 1320-1322 (1994) · Zbl 0812.93029 [9] Khargonekar, P. P.; Petersen, I. R.; Rotea, M. A., \(H_∞\) optimal control with state feed back, IEEE Trans. Automat. Control, AC-33, 786-788 (1988) · Zbl 0655.93026 [10] Khargonekar, P. P.; Petersen, I. R.; Zhou, K., Robust stabilization of uncertain linear system: quadratic stabilizability and \(H_∞\) control theory, IEEE Trans. Automat. Control, AC-35, 356-361 (1990) · Zbl 0707.93060 [11] Lee, J. H.; Kim, S. W.; Kwon, W. H., Memoryless \(H_∞\) controllers for stable delay systems, IEEE Trans. Automat. Control, AC-39, 156-162 (1994) [12] Lou, J. S.; Johnson, A.; Van Den Bosch, P. P.J., Delay-independent robust stability of uncertain linear system, Systems Control Lett., 24, 33-39 (1995) · Zbl 0877.93078 [13] Mahmoold, M. S.; Al-Muthairi, N. F., Design of a robust controller for time-delay systems, IEEE Trans. Automat. Control, AC-39, 995-999 (1994) · Zbl 0807.93049 [14] Mahmoold, M. S.; Al-Muthairi, N. F., Quadratic stabilization of continuous time systems with state delay and norm bounded time varying uncertainties, IEEE Trans. Automat. Control, AC-39, 2135-2139 (1994) · Zbl 0925.93585 [15] Petersen, I. R.; Hollot, C. V., A Riccati equation approach to the stabilization of uncertain linear system, Automatica, 22, 397-411 (1986) · Zbl 0602.93055 [16] Sampei, T.; Mita, T.; Nakamichi, M., An algebraic approach to the \(H_∞\) output feedback control problem, Systems Control Lett., 14, 13-24 (1990) · Zbl 0692.93031 [17] Shen, J. C.; Chen, B. S.; Kung, F. C., Memoryless \(H_∞\) controllers for stable delay systems, IEEE Trans. Automat. Control, AC-38, 638-640 (1993) [18] Su, T. J.; Lie, P. L., Robust stability for linear uncertain time-delay system with delay dependence, Int. J. System Sci., 24, 1067-1080 (1993) · Zbl 0773.93070 [19] Thhowsen, T., Uniform ultimate boundedness of the solutions of uncertain dynamic delay systems with state dependent and memoryless feedback control, Int. J. Control, 45, 1135-1143 (1983) · Zbl 0511.93052 [20] Trinh, H.; Aldeen, M., Stabilization of uncertain dynamic delay systems by memoryless feedback controllers, Int. J. Control, 59, 1525-1542 (1994) · Zbl 0806.93050 [21] Tseng, C. L.; Fong, I. K.; Su, J. H., Robust stability analysis for uncertain delay system with output feedback controller, Systems Control Lett., 14, 13-24 (1990) [22] Xie, L.; Fu, M.; DeSouza, C. E., \(H_∞\) control and quadrative stabilization of system with parameter uncertain via output feedback, IEEE Trans. Automat. Control, AC-37, 1253-1256 (1992) · Zbl 0764.93067 [23] Xie, L.; DeSouza, C. E., Robust \(H_∞\) control for linear systems with norm-bounded time-varying uncertainty, IEEE Trans. Automat. Control, AC-37, 1188-1191 (1992) · Zbl 0764.93027 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.