×

Criterion for 3 to be eleventh power. (English) Zbl 0876.11002

The author gives a criterion for 3 to be an 11th power modulo a prime \(p\) of the form \(p=x^2 +11y^2\).
Reviewer: R.Mollin (Calgary)

MSC:

11A07 Congruences; primitive roots; residue systems
11D09 Quadratic and bilinear Diophantine equations
11N32 Primes represented by polynomials; other multiplicative structures of polynomial values
11R11 Quadratic extensions
PDF BibTeX XML Cite
Full Text: EuDML

References:

[1] Alderson H. P.: On the septimic character of 2 and 3. Proc. Camb. Phil. Soc. 74 (1973), 421-433. · Zbl 0265.10003
[2] Ankeny N. C.: Criterion for rth power residuacity. Pacific J. Math. 10 (1960), 1115-1124. · Zbl 0113.26801
[3] Jacobi C. G. J.: De residuis cubicis commentatio numerosa. J. für Reine und Angew. Math. 2 (1827), 66-69.
[4] Jakubec S.: Note on the Jacobi sum. Seminaire de theorie des nombres de Bordeaux to appear (1994). · Zbl 0816.11027
[5] Lehmer E.: The quintic character of 2 and 3. Duke Math. J. 18 (1951), 11-18. · Zbl 0045.02002
[6] Leonard P. A., Williams K. S.: The septic character of 2, 3, 5 and 7. Pacific J. Math. 52 (1974), 143-147. · Zbl 0265.10004
[7] Muskat J. B.: On the solvability of \(x^c \equiv e (\bmod p). Pacific J. Math. 14 (1964), 257-260.\) · Zbl 0117.27701
[8] Parnami J. C., Agrawal M. K., Rajwade A.R.: Criterion for 2 to be l-th power. Acta Arith. 43 (1984), 361-364. · Zbl 0539.10006
[9] Williams K. S.: Explicit criteria for quintic residuacity. Math. Comp. 30 (1974), 1-6. · Zbl 0341.10004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.