The source identification problem in electromagnetic theory. (English) Zbl 0876.35130

Summary: The problem of the identification of the electromagnetic source which produces an assigned radiation pattern is ill-posed: the solution is, in general, not unique and it does not depend continuously on the data. In this paper, we treat in detail these two aspects of the problem. First of all, we reconsider the radiation problem in the very general setting of the Sobolev spaces in order to make more acceptable, from a physical viewpoint, the conditions which have to be imposed on the electromagnetic sources. Then by the use of the Euclidean character of the Hilbert spaces, we decompose the sources into a radiating and a non-radiating component. We determine the subspace of the radiating sources and we find the basis spanning this subspace.
Particular attention is then devoted to the case of the linear antenna. In this case, the solution of the problem is unique but it does not depend continuously on the data. We may, however, implement the problem taking into account a bound on the Ohmic losses. This is sufficient to restore the continuity. Finally, a method of variational regularization (in the sense of Tikhonov) is discussed in detail.


35R30 Inverse problems for PDEs
78A40 Waves and radiation in optics and electromagnetic theory
35Q60 PDEs in connection with optics and electromagnetic theory
Full Text: DOI


[1] DOI: 10.1002/prop.19610090702 · Zbl 0096.42802 · doi:10.1002/prop.19610090702
[2] DOI: 10.1103/PhysRevD.8.1044 · doi:10.1103/PhysRevD.8.1044
[3] DOI: 10.1063/1.1666629 · doi:10.1063/1.1666629
[4] DOI: 10.1063/1.523256 · Zbl 0379.76076 · doi:10.1063/1.523256
[5] DOI: 10.1109/TAP.1972.1140197 · doi:10.1109/TAP.1972.1140197
[6] Nashed M. Z., IEEE Trans. Antennas Propag. 29 pp 2– (1981) · doi:10.1109/TAP.1981.1142564
[7] DOI: 10.1007/BF02731792 · doi:10.1007/BF02731792
[8] DOI: 10.1016/S0065-2539(08)60946-4 · doi:10.1016/S0065-2539(08)60946-4
[9] DOI: 10.1063/1.523860 · doi:10.1063/1.523860
[10] DOI: 10.1002/j.1538-7305.1961.tb03977.x · Zbl 0184.08602 · doi:10.1002/j.1538-7305.1961.tb03977.x
[11] DOI: 10.1002/j.1538-7305.1962.tb03279.x · Zbl 0184.08603 · doi:10.1002/j.1538-7305.1962.tb03279.x
[12] DOI: 10.1137/0501006 · Zbl 0214.14804 · doi:10.1137/0501006
[13] DOI: 10.1063/1.1666435 · Zbl 0256.35066 · doi:10.1063/1.1666435
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.