Föllmer, Hans; Gantert, Nina Entropy minimization and Schrödinger processes in infinite dimensions. (English) Zbl 0876.60063 Ann. Probab. 25, No. 2, 901-926 (1997). A Schrödinger process is a Markov process that can be expressed as a mixture of Brownian bridges. In finite-dimensional spaces, they appear in a problem of large deviation involving minimization of the relative entropy with fixed marginals, which has been considered first by Schrödinger, and can also be obtained as a Doob’s \(h\)-transform of Brownian motion for a certain class of space-time harmonic functions. The paper investigates the analogous connections in infinite dimension. Reviewer: J.Bertoin (Paris) Cited in 1 ReviewCited in 10 Documents MSC: 60J65 Brownian motion 60F10 Large deviations 60J45 Probabilistic potential theory 60J25 Continuous-time Markov processes on general state spaces 94A17 Measures of information, entropy Keywords:Schrödinger process; Brownian bridges; large deviation; space-time harmonic functions PDF BibTeX XML Cite \textit{H. Föllmer} and \textit{N. Gantert}, Ann. Probab. 25, No. 2, 901--926 (1997; Zbl 0876.60063) Full Text: DOI OpenURL References: [1] AEBI, R. 1996. Schrodinger Diffusion Processes. Birkhauser, Basel. \" \" Z. · Zbl 0846.60002 [2] BERNSTEIN, S. 1932. Sur les liaisons entre les grandeurs aleatoires. Verh. Internat. Math. Ḱongr. Zurich 1 288 309. \" Z. · Zbl 0007.02104 [3] BEURLING, A. 1960. An automorphism of product measures. Ann. Math. 72 189 200. Z. JSTOR: · Zbl 0091.13001 [4] BORWEIN, J. M. and LEWIS, A. S. 1992. Decomposition of multivariate functions. Canad. J. Math. 44 463 482. Z. · Zbl 0789.54012 [5] BORWEIN, J. M., LEWIS, A. S. and NUSSBAUM, R. 1994. Entropy minimization, DAD problems, and doubly stochastic kernels. J. Funct. Anal. 123 264 307. Z. · Zbl 0815.15021 [6] BROCKHAUS, O. 1995. Konditionierungen des Brownschen Blattes: Große Abweichungen und Schrodinger-Brucken. Bonner Math. Schriften 285. \" \" Z. · Zbl 0842.60079 [7] CSISZAR, I. 1975. I-divergence geometry of probability distribution and minimization problems. Ánn. Probab. 3 146 158. Z. · Zbl 0318.60013 [8] DAWSON, D., GOROSTIZA, L. and WAKOLBINGER, A. 1990. Schrodinger processes and large deviaẗions. J. Math. Phys. 31 2385 2388. Z. · Zbl 0736.60071 [9] DONSKER, M. D. and VARADHAN, S. R. S. 1975. Asymptotic evaluation of certain Markov process expectations for large time. III. Comm. Pure Appl. Math. 29 389 461. Z. · Zbl 0348.60031 [10] DOOB, J. L. 1984. Classical Potential Theory and Its Probabilistic Counterpart. Springer, New York. Z. · Zbl 0549.31001 [11] FOLLMER, H. 1988. Random fields and diffusion processes. Ecole d’Ete de Saint Flour XV XVII. \" Ĺecture Notes in Math. 1362 101 203. Springer, New York. Z. · Zbl 0661.60063 [12] FOLLMER, H. 1991. Martin boundaries on Wiener Space. In Diffusions Processes and Related \" Z. Problems in Analysis. I M. Pinsky, ed.. 3 16. Birkhauser, Basel. \" Z. [13] FORTET, R. 1940. Resolution d’un systeme d’equations de M. Schrodinger. J. Math. Pures Appl. \' \' \" Z. 9 83 105. Z. · Zbl 0024.31803 [14] GANTERT, N. 1994. Self-similarity of Brownian motion and a large deviation principle for random fields on a binary tree. Probab. Theory Related Fields 98 7 20. Z. · Zbl 0794.60014 [15] JAMISON, B. 1974. Reciprocal processes. Z. Wahrsch. Verw. Gebiete 30 65 86. Z. · Zbl 0326.60033 [16] JAMISON, B. 1975. The Markov process of Schrodinger. Z. Wahrsch. Verw. Gebiete 32 323 331. \" Z. · Zbl 0365.60064 [17] NAGASAWA, M. 1993. Schrodinger Equations and Diffusion Theory. Birkhauser, Basel. \" \" Z. [18] RUSCHENDORF, L. and THOMSEN, W. 1993. Note on the Schrodinger equation and I-projections. \" \" Statist. Probab. Lett. 17 369 375. \" Z. · Zbl 0780.60036 [19] SCHRODINGER, E. 1931. Uber die Umkehrung der Naturgesetze. Sitzungsber. Preuss. Akad. Ẅiss. Berlin Phys. Math. Kl. 8 9 144 153. Z. · JFM 57.1147.01 [20] SCHRODINGER, E. 1932. Sur la theorie relativiste de l’electron et l’interpretation de la mecanique \" \' \' \' quantique. Ann. Inst. H. Poincare 2 269 310. Ź. · Zbl 0004.42505 [21] THIEULLEN, M. 1993. Second order stochastic differential equations and non gaussian reciprocal diffusions. Probab. Theory Related Fields 97 231 257. Z. · Zbl 0793.60051 [22] THIEULLEN, M. and ZAMBRINI, J. C. 1995. Symmetries in stochastic calculus of variations. Preprint, Laboratoire de Probabilites, Univ. Paris VI. \' · Zbl 0868.60064 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.