zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Adaptive robust control of SISO nonlinear systems in a semi-strict feedback form. (English) Zbl 0876.93083
The authors of this paper investigate robust adaptive control of a class of single-input, single-output (SISO) nonlinear systems transformable to a semi-strict feedback form. These systems can possess both parameter uncertainties and unknown linear functions representing modeling errors and external disturbances. The authors develop a systematic way to combine backstepping adaptive control with deterministic robust control provided that there is prior knowledge of the bounds of the parameter uncertainties and known bounding functions of the unknown linear functions. The authors’ method preserves the advantages of each part of the hybrid approach: asymptotic stability of adaptive control in the presence of parametric uncertainties and guaranteed transient performance with the prescribed precision of deterministic robust control for both parametric uncertainties and unknown nonlinear functions. Simulation results for a simple example illustrate the authors’ results.

93D21Adaptive or robust stabilization
93C40Adaptive control systems
93C10Nonlinear control systems
Full Text: DOI
[1] Barmish, B. R.; Leitmann, G.: On ultimate boundedness control of uncertain systems in the absence of matching assumptions. IEEE trans. Autom. control 27, 153-158 (1982) · Zbl 0469.93043
[2] Chen, Y. H.: Design of robust controllers for uncertain dynamical systems. IEEE trans. Autom. control 33, 487-491 (1988) · Zbl 0638.93053
[3] Corless, M. J.; Leimann, G.: Continuous state feedback guaranteeing uniform ultimate boundedness for uncertain dynamic systems. IEEE trans. Autom. control 26, 1139-1144 (1981) · Zbl 0473.93056
[4] Datta, A.: Computed torque adaptive control of rigid robots with improved transient performance. Proc. American control conf., 1418-1422 (1993)
[5] Goodwin, G. C.; Mayne, D. Q.: A parameter estimation perspective of continuous time model reference adaptive control. Automatica 23, 57-70 (1989) · Zbl 0617.93033
[6] Isidori, A.: Nonlinear control systems: an introduction. (1989) · Zbl 0693.93046
[7] Kanellakopoulos, I.: Passive adaptive control of nonlinear systems. Int. J. Adaptive control sig. Process. 7, 339-352 (1993) · Zbl 0796.93067
[8] Kanellakopoulos, I.: Also ink.j.åströmg.c.goodwinp.r.kumaradaptive control, filtering and signal processing. Adaptive control, filtering and signal processing, 89-133 (1994)
[9] Kanellakopoulos, I.; Kokotovic, P. V.; Morse, A. S.: Systematic design of adaptive controllers for feedback linearizable systems. IEEE trans. Autom. control 36, 1241-1253 (1991) · Zbl 0768.93044
[10] Krstic, M.; Kanellakopoulos, I.; Kokotovic, P. V.: Adaptive nonlinear control without overparametrization. Syst. control lett. 19, 177-185 (1992) · Zbl 0763.93043
[11] Krstic, M.; Kanellakopoulos, I.; Kokotovic, P. V.: Nonlinear and adaptive control design. (1995)
[12] Marino, R.; Tomei, P.: Global adaptive output-feedback control of nonlinear systems, part i: Linear parameterization; part ii: Nonlinear parameterization. IEEE trans. Autom. control 38, 17-49 (1993) · Zbl 0783.93032
[13] Narendra, K. S.; Annaswamy, A. M.: Stable adaptive systems. (1989) · Zbl 0758.93039
[14] Narendra, K. S.; Boskovic, J. D.: A combined direct, indirect, and variable structure method for robust adaptive control. IEEE trans. Autom. control 37, 262-268 (1992)
[15] Polycarpou, M. M.; Ioannou, P. A.: A robust adaptive nonlinear control design. Proc. American control conf., 1365-1369 (1993)
[16] Pomet, J. B.; Praly, L.: Adaptive nonlinear regulation: estimation from the iyapunov equation. IEEE trans. Autom. control 37, 729-740 (1992) · Zbl 0755.93071
[17] Qu, Z.: Robust control of nonlinear uncertain systems under generalized matching conditions. Automatica 29, 985-998 (1993) · Zbl 0776.93041
[18] Qu, Z.; Dawson, D. M.; Dorsey, J. F.: Exponentially stable trajectory following of robotic manipulators under a class of adaptive controls. Automatica 28, 579-586 (1992) · Zbl 0766.93056
[19] Reed, J. S.; Loannou, P. A.: Instability analysis and robust adaptive control of robotic manipulators. IEEE trans. Robotics automation 5, 381-386 (1989)
[20] Sastry, S.; Isidori, A.: Adaptive control of linearizable systems. IEEE trans. Autom. control 34, 1123-1131 (1989) · Zbl 0693.93046
[21] Slotine, J. J. E.: The robust control of robot manipulators. Int. J. Robotics res. 4, 49-63 (1985)
[22] Slotine, J. J. E.; Li, W.: Applied nonlinear control. (1991) · Zbl 0753.93036
[23] Teel, A. R.: Adaptive tracking with robust stability. Proc. 32nd IEEE conf. On decision and control, 570-575 (1993)
[24] Utkin, V. I.: Sliding modes in control optimization. (1992) · Zbl 0748.93044
[25] Yao, B.; Tomizuka, M.: Comparative experiments of robust and adaptive control with new robust adaptive controllers for robot manipulators. Proc. 33nd IEEE conf. On decision and control, 1290-1295 (1994)
[26] Yao, B.; Tomizuka, M.: Robust desired compensation adaptive control of robot manipulators with guaranteed transient performance. Proc. IEEE conf. On robotics and automation, 1830-1836 (1994)
[27] Yao, B.; Tomizuka, M.: Alsoasme J. Dyn. syst., measurement, control. ASME J. Dyn. syst., measurement, control 118, 764-775 (1994)
[28] Young, K. K. D.: Controller design for a manipulator using the theory of variable structure systems. IEEE trans. Syst. man cybernetics 8, 101-109 (1978) · Zbl 0369.93002
[29] Yu, H.; Seneviratne, L. D.; Earles, S. W. E.: Robust adaptive control for robot manipulators using a combined method. Proc. IEEE conf. On robotics and automation, 612-617 (1993)
[30] Zinober, A. S. I.: Deterministic control of uncertain control system. (1990) · Zbl 0754.93001