zbMATH — the first resource for mathematics

The stability of the radial solution to the Ginzburg-Landau equation. (English) Zbl 0877.35018
The eigenvalues of the first Fréchet derivative of the Ginzburg-Landau operator at a radial solution are discussed. For the degree one case, it is also shown that the radial solution uniquely minimizes the corresponding energy functional.

35B35 Stability in context of PDEs
35J65 Nonlinear boundary value problems for linear elliptic equations
Full Text: DOI
[1] Bethuel, F., Brezis, H. and Hélein, F. 1994. ”Ginzburg-Landau Vortices”. MA: Birkhuser Boston, Inc. · Zbl 1372.35002
[2] Coppel, W. A. 1965. ”Stability and Asymptotic Behavior of Differential Equations”. Mass.: D. C. Health and Co. · Zbl 0154.09301
[3] Courant, R. and Hilbert, D. 1989. ”Methods of Mathematical Physics”. New York: John Wiley and Sons, Inc. · Zbl 0729.35001
[4] DOI: 10.1137/0142054 · Zbl 0507.35007 · doi:10.1137/0142054
[5] Hervé M., Ann. Inst. Henri Poincaré 11 pp 427– (1994)
[6] Fritz John. 1965. ”Ordinary Differential Equations”. Courant Institute of Mathematical Sciences.
[7] Liep E.H., Math. Res. Lett. 1 pp 701– (1994)
[8] Petru Mironescu, J. Funct. Anal. 130 pp 334– (1995) · Zbl 0839.35011 · doi:10.1006/jfan.1995.1073
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.