Badiale, Marino; Tarantello, Gabriella Existence and multiplicity results for elliptic problems with critical growth and discontinuous nonlinearities. (English) Zbl 0877.35046 Nonlinear Anal., Theory Methods Appl. 29, No. 6, 639-677 (1997). The paper provides existence and multiplicity results for the elliptic problem \[ -\Delta u=u^{p-1}+bh(u-a),\;u>0\quad\text{in }\Omega,\;u=0\quad\text{on} \partial\Omega\tag{1} \] where \(a,b>0\), \(\Omega\) is a bounded subset of \(\mathbb{R}^N\) and \(h\) is the Heaviside function \(h(s)=0\), if \(s<0\) and \(h(s)=1\), if \(s\geq 0\). The authors also study carefully the elliptic problem of the form (1) with nonmonotone nonlinearity, i.e. when the function \(h\) is replaced by a lower jump function \(g\) such that \(g(s)=1\), if \(s\leq 0\) and \(g(s)=0\), if \(s>0\). It is shown that for fixed positive \(b\) and \(N\geq 5\), problem (1) admits a weak solution \(u_a\) in \(W^{2,q}(\Omega)\cap H^1_0(\Omega)\) for every \(q\in[1,+\infty)\) and every \(a>0\), satisfying \(|u_a|_\infty>a\). If \(N=3,4\), the existence of such a solution to (1) is established only for \(a>0\) small. As far as the multiplicity of solutions is considered, it is proved that for \(b\in(0,b^*]\), with a suitable \(b^*>0\), there exists \(a^*=a^*(b)>0\) such that for every \(a\in(0,a^*)\) problem (1) admits, in the same class, three ordered weak solutions in \(\Omega\).The approach used in this paper combines the sub- and super-solution method with the variational technique developed by Chang for a class of locally Lipschitz functionals. Reviewer: S.Migorski (Krakow) Cited in 41 Documents MSC: 35J65 Nonlinear boundary value problems for linear elliptic equations 35J20 Variational methods for second-order elliptic equations Keywords:semilinear elliptic equation; critical Sobolev exponent; Clarke subdifferential × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Pohozaev, S., Eigenfunctions of the equation −Δ \(u\) + λƒ \(u = 0\), Soviet Math. Dokl., 6, 1408-1411 (1965) · Zbl 0141.30202 [2] Brezis, H.; Nirenberg, L., Positive solutions of nonlinear elliptic equation involving the critical Sobolev exponent, Communs pure appl. Math., 36, 437-477 (1983) · Zbl 0541.35029 [3] Bahri, A.; Coron, J. M., On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain, Communs pure appl. Math., 41, 253-294 (1988) · Zbl 0649.35033 [4] Coron, J. M., Topologie et cas limite des injections de Sobolev, C. r. Acad. Sci. Paris, 299, 209-212 (1984) · Zbl 0569.35032 [5] Caffarelli, L.; Spruck, J., Variational problems with critical Sobolev growth and positive Dirichlet data, Indiana Univ. math. J., 39, 1-18 (1990) · Zbl 0717.35028 [6] Badiale, M., Some remarks on elliptic problems with discontinuous nonlinearities, (Rend. Sem. Mat. Torino, 51 (1993)), 331-342 · Zbl 0817.35024 [7] Brezis, H.; Nirenberg, L., Minima locaux relatifs à \(C^1\) et \(H^1\), C. r. Acad. Sci. Paris, 37, 1, 465-472 (1993) · Zbl 0803.35029 [8] Clarke, F. H., Generalized gradients and applications, Trans. Am. math. Soc., 205, 247-262 (1975) · Zbl 0307.26012 [9] Clarke, F. H., A new appoach to Lagrange multipliers, Math. Oper. Res., 1, 165-174 (1976) · Zbl 0404.90100 [10] Clarke, F. H., (Optimization and Nonsmooth Analysis (1990), SIAM: SIAM Cambridge) · Zbl 0696.49002 [11] Chang, K. C., Variational methods for nondifferentiable functionals and their applications to partial differential equations, J. math. Analysis Applic., 80, 102-129 (1981) · Zbl 0487.49027 [12] Chang, K. C., Free boundary problems and the set-valued mappings, J. diff. Eqns, 49, 1-28 (1983) · Zbl 0533.35088 [13] Chang, K. C., The obstacle problem and partial differential equations with discontinuous nonlinearities, Communs pure appl. Math., 33, 117-146 (1980) · Zbl 0405.35074 [14] Ambrosetti, A.; Badiale, M., The dual variational principle and elliptic equations with discontinuous nonlinearities, J. math. Analysis Applic., 140, 363-373 (1989) · Zbl 0687.35033 [15] Ambrosetti, A.; Struwe, M., Existence of steady vortex rings in an ideal fluid, Arch. ration. mech. Analysis, 108, 97-109 (1989) · Zbl 0694.76012 [16] Ambrosetti, A.; Turner, R. E.L., Some discontinuous variational problems, Diff. Integral Eqns, 1, 341-349 (1988) · Zbl 0728.35037 [17] Amick, C. J.; Turner, R. E.L., A global branch of steady vortex rings, J. reine angew. Math., 384, 1-23 (1988) · Zbl 0628.76032 [18] Marano, S. A., Existence theorems for a semilinear elliptic boundary value problem, Annales Pol. Math., LX.1, 57-67 (1994) · Zbl 0826.35146 [19] Carl, S.; Heikkilä, S.; Lakshmikantham, V., Nonlinear elliptic differential inclusions governed by state-dependent subdifferentials, Nonlinear Analysis, 25, 729-745 (1995) · Zbl 0931.35203 [20] Cerami, G., Metodi variazionali nello studio di problemi al contorno con parte nonlineare discontinua, Rend. Circ. mat. Palermo, 32, 336-357 (1983) · Zbl 0557.35045 [21] Stuart, C., Differential equations with discontinuous nonlinearities, Arch. ration. mech. Analysis, 63, 59-75 (1976) · Zbl 0393.34010 [22] Stuart, C.; Toland, J. F., A variational method for boundary value problems with discontinuous nonlinearities, J. London math. Soc., 21, 319-328 (1980) · Zbl 0434.35042 [23] Amann, H., Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev., 18, 620-709 (1976) · Zbl 0345.47044 [24] Chang, K. C., Variational method and the sub- and super-solutions, Sci. Sinica Ser. A, 26, 1256-1265 (1983) · Zbl 0544.35045 [25] Hess, P., On the solvability of nonlinear elliptic boundary value problems, Indiana Univ. math. J., 25, 461-466 (1976) · Zbl 0329.35029 [26] Sattinger, D. H., Monotone methods in nonlinear elliptic and parabolic boundary value problems, Indiana Univ. math. J., 21, 979-1000 (1972) · Zbl 0223.35038 [27] Struwe, M., (Variational Methods (1990), Springer-Verlag: Springer-Verlag Philadelphia) · Zbl 0746.49010 [28] Gilbarg, D.; Trudinger, N. S., (Elliptic Partial Differential Equations of Second Order (1983), Springer-Verlag: Springer-Verlag Berlin) · Zbl 0562.35001 [29] Tarantello, G., On nonhomogeneous elliptic equations involving critical Sobolev exponent, Ann. Inst. H. Poincaré Analyse non Lineaire, 9, 281-304 (1992) · Zbl 0785.35046 [30] Merle, F., Sur la nonexistence de solutions positive d’équations elliptiques surlinéaires, C. r. Acad. Sci. Paris, 306, 313-316 (1988) · Zbl 0696.35062 [31] Zheng, X., A nonexistence result of positive solutions for an elliptic equation, Ann. Inst. H. Poincaré Analyse non Linéaire, 7, 91-96 (1990) · Zbl 0719.35028 [32] Ambrosetti, A.; Rabinowitz, P. H., Dual variational methods in critical point theory and applications, J. funct. Analysis, 14, 349-381 (1973) · Zbl 0273.49063 [33] Brezis, H.; Nirenberg, L., A minimization problem with critical exponent and nonzero data, (Symmetry in Nature (1989), Scuola Normale Superiore: Scuola Normale Superiore Berlin), 129-140 · Zbl 0763.46023 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.