Optimal design of robust predictors for linear discrete-time systems. (English) Zbl 0877.93050

Summary: The one-step-ahead prediction problem for systems subject to parameter uncertainty in the system dynamics and noise statistics is considered. The objective is the design of a robust predictor that minimizes an upper bound of the error covariance. Sufficient and necessary conditions for the existence of such an optimal robust estimator are given. The computation of the predictor is based on the stabilizing solution of a suitable \(H_{\infty}\)-type Riccati equation. In the uncertainty-free case the robust predictor reduces to the standard Kalman predictor.


93B51 Design techniques (robust design, computer-aided design, etc.)
93E11 Filtering in stochastic control theory
93B36 \(H^\infty\)-control
93C55 Discrete-time control/observation systems
Full Text: DOI


[1] Basar, T., Optimum performance levels for minimax filters, predictors and smoothers, Systems Control Lett., 16, 309-317 (1991) · Zbl 0729.93077
[2] Bolzern, P.; Colaneri, P.; De Nicolao, G., Optimal design of robust predictors for linear discrete-time systems, (Int. Rep. 93-004 (1993), Centro Teoria dei Sistemi-CNR, Politecnico di Milano) · Zbl 0877.93050
[3] Bolzern, P.; Colaneri, P.; DeNicolao, G., On the computation of upper covariance bounds for perturbed linear systems, IEEE Trans. Automat. Control, AC-39, 623-626 (1994) · Zbl 0820.93072
[4] Bolzern, P.; Colaneri, P.; DeNicolao, G., Covariance bounds for discrete-time linear systems with parameter uncertainty, Internat. J. Control, 60, 1307-1317 (1994) · Zbl 0813.93054
[5] Packard, A.; Doyle, J. C., Quadratic stability with real and complex perturbations, IEEE Trans. Automat. Control, AC-35, 198-201 (1990) · Zbl 0705.93060
[6] Petersen, I. R.; McFarlane, D. C., Robust state estimation for uncertain systems, (Proc. 30th Conf. Decision and Control. Proc. 30th Conf. Decision and Control, Brighton, England (December 1991)), 2630-2631
[7] Stoorvogel, A. A., The \(H_∞\) Control Problem (1992), Prentice Hall: Prentice Hall New York · Zbl 0766.93043
[8] Xie, L.; de Souza, C. E.; Fu, M., \(H_∞\) estimation for discrete-time linear uncertain systems, Internat. J. Robust Nonlinear Control, 1, 111-123 (1991) · Zbl 0754.93050
[9] Xie, L.; Soh, Y. C.; de Souza, C. E., Robust \(L_2\) filtering: the discrete-time c ase, (Proc. 32nd Conf. Decision and Control. Proc. 32nd Conf. Decision and Control, San Antonio, TX (December 1993)), 1250-1251
[10] Yaesh, I.; Shaked, U., A transfer function approach to the problems of discrete-time systems \(H_∞\)-optimal control and filtering, IEEE Trans. Automat. Control, AC-36, 1264-1271 (1991) · Zbl 0758.93045
[11] Zhu, G.; Skelton, R. E., Robust discrete controllers guaranteeing \(l_1\) and \(l_∞\) performances, IEEE Trans. Automat. Control, AC-37, 1620-1625 (1992) · Zbl 0770.93035
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.