[1] |
D. H. Bailey, The computation of pi to 29,360,000 decimal digits using Borweins’ quartically convergent algorithm,Mathematics of Computation 42 (1988), 283--296. · Zbl 0641.10002 |

[2] |
D. H. Bailey, P. B. Borwein, and S. Plouffe, On the rapid computation of various polylogarithmic constants, (to appear in Mathematics of Computation). Available fromhttp://www.cecm.sfu/personal/pborwein/. · Zbl 0879.11073 |

[3] |
P. Beckmann,A History of Pi, New York: St. Martin’s Press (1971). · Zbl 0221.01002 |

[4] |
L. Berggren, J. M. Borwein, and P. B. Borwein,A Sourcebook on Pi, New York: Springer-Verlag (to appear). |

[5] |
J. M. Borwein and P. B. Borwein,Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity, New York: Wiley (1987). · Zbl 0611.10001 |

[6] |
J. M. Borwein and P. B. Borwein, Ramanujan and pi,Scientific American (February 1987), 112-117. |

[7] |
J. M. Borwein, P. B. Borwein, and D. H. Bailey, Ramanujan, modular equations, and approximations to pi, or how to compute one billion digits of pi,American Mathematical Monthly 96 (1989), 201--219. Also available from the URLhttp://www.cecm.sfu.ca/personal/pborwein/. · Zbl 0672.10017
· doi:10.2307/2325206 |

[8] |
R. P. Brent, Fast multiple-precision evaluation of elementary functions,Journal of the ACM 23 (1976), 242--251. · Zbl 0324.65018
· doi:10.1145/321941.321944 |

[9] |
D. Chudnovsky and C. Chudnovsky, personal communication (1995). |

[10] |
H. R. P. Ferguson and D. H. Bailey, Analysis of PSLQ, an integer relation algorithm, unpublished, 1996. |

[11] |
T. L. Heath (trans.), The works of Archimedes, inGreat Books of the Western World (Robert M. Hutchins, ed.), Encyclopedia Britannica (1952), Vol. 1, pp. 447--451. |

[12] |
Y. Kanada, personal communication (1996). See also Kanada’s book (in Japanese),Story of Pi, Tokyo: Tokyo-Toshyo Co. Ltd. (1991). |

[13] |
D. E. Knuth,The Art of Computer Programming, Reading, MA: Addison-Wesley, (1981), Vol. 2. · Zbl 0477.65002 |

[14] |
R. Preston, The mountains of pi,The New Yorker, 2 March 1992, 36-67. |

[15] |
S. D. Rabinowitz and S. Wagon, A spigot algorithm for pi,American Mathematical Monthly 103 (1995), 195--203. · Zbl 0853.11102
· doi:10.2307/2975006 |

[16] |
E. Salamin, Computation of pi using arithmetic-geometric mean,Mathematics of Computation 30 (1976), 565--570. · Zbl 0345.10003 |

[17] |
D. Shanks and J. W. Wrench, Calculation of pi to 100,000 decimals,Mathematics of Computation 16 (1962), 76--79. · Zbl 0104.36002 |

[18] |
S. Wagon, Isit normal?Mathematical Intelligencer 7 (1985), no. 3, 65--67. · Zbl 0565.10002 |