zbMATH — the first resource for mathematics

Robust estimation of parameters in a mixed unbalanced model. (English) Zbl 0878.62024
Summary: This paper describes a method of robust estimation of shift and scale parameters in a mixed unbalanced interlaboratory model. Estimators presented result from “easily computable” Fréchet differentiable functionals which enjoy some optimal properties in a small neighborhood of the model. A rigorous treatment of their asymptotic behaviour under departures from the model assumptions and a simulation study are given.

62F35 Robustness and adaptive procedures (parametric inference)
62F10 Point estimation
62J10 Analysis of variance and covariance (ANOVA)
Full Text: DOI
[1] Bednarski, T. (1993). Robust estimation in the Cox regression model. Scand. J. Statist. 20 213- 225. · Zbl 0794.62026
[2] Bednarski, T. (1994). Fréchet differentiability and robust estimation. In Asy mptotic Statistics. Proceedings of the Fifth Prague Sy mposium 49-58. Springer, Berlin.
[3] Bednarski, T., Clarke, B. R. and Kolkiewicz, W. (1991). Statistical expansions and locally uniform Fréchet differentiability. J. Austral. Math. Soc. Ser. A 50 88-97. · Zbl 0733.62026
[4] Bednarski, T., Zmyślony, R. and Zontek, S. (1992). On robust estimation of variance components via von Mises functionals. Preprint 504, Institute of Mathematics, Polish Academy of Sciences. · Zbl 0842.62021
[5] Bickel, P. J. (1981). Quelques aspects de la Statistique Robuste. Lecture Notes in Math. 876 1-72. Springer, Berlin. · Zbl 0484.62053
[6] Clarke, B. R. (1983). Uniqueness and Fréchet differentiability of functional solutions to maximum likelihood ty pe equations. Ann. Statist. 11 1196-1206. · Zbl 0541.62023
[7] Clarke, B. R. (1986). Nonsmooth analysis and Fréchet differentiability of M-functionals. Probab. Theory Related Fields 73 197-209. · Zbl 0581.60005
[8] Dudley, R. M. (1992). Fréchet differentiability, p-variation and uniform Donsker classes. Ann. Probab. 20 1968-1982. · Zbl 0778.60026
[9] Fellner, W. H. (1986). Robust estimation of variance components. Technometrics 28 51-60. JSTOR: · Zbl 0597.62018
[10] Fernholz, L. T. (1983). Von Mises Calculus for Statistical Functionals. Lecture Notes in Statistics 19. Springer, New York. · Zbl 0525.62031
[11] Gill, R. D. (1989). Nonand semi-parametric maximum likelihood estimators and the von Mises method. Part 1. Scand. J. Statist. 16 97-128. · Zbl 0688.62026
[12] Harville, D. A. (1977). Maximum likelihood approaches to variance component estimation and to related problems. J. Amer. Statist. Assoc. 72 320-338. JSTOR: · Zbl 0373.62040
[13] Huber, P. J. (1981). Robust Statistics. Wiley, New York. · Zbl 0536.62025
[14] Huggins, R. M. (1993). On the robust analysis of variance components models for pedigree data. Austral. J. Statist. 35 43-57. · Zbl 0772.62062
[15] Iglewicz, B. (1983). Robust scale estimators and confidence intervals for location In Understanding Robust and Exploratory Data Analy sis (D. C. Hoagling, F. Mosteller and J. W. Tukey, eds.) 404-431. Wiley, New York.
[16] Kiefer, J. (1961). On large deviations of the empiric D.F. of vector chance variables and a law of iterated logarithm. Pacific J. Math. 11 649-660. · Zbl 0119.34904
[17] Le Cam, L. (1982). Limit theorems for empirical measures and Poissonization. In Statistics and Probability: Essay s in Honor of C. R. Rao 455-463. North-Holland, Amsterdam. · Zbl 0486.60004
[18] Lischer, P. (1994). Robust statistical methods in interlaboratory analytical studies. Unpublished manuscript. · Zbl 0839.62033
[19] Luenberger, D. (1969). Optimization by Vector Space Methods. Wiley, New York. · Zbl 0176.12701
[20] Maronna, R. A. and Yohai, V. J. (1981). Asy mptotic behaviour of general M-estimates for regression and scale with random carriers. Z. Wahrsch. Verw. Gebiete 58 7-20. · Zbl 0451.62031
[21] Reeds, J. A. (1976). On the definition of von Mises functions. Ph.D. dissertation, Dept. Statistics, Harvard Univ.
[22] Rieder, H. (1994). Robust Asy mptotic Statistics. Springer, New York. · Zbl 0927.62050
[23] Rocke, D. M. (1991). Robustness and balance in the mixed model. Biometrics 47 303-309.
[24] von Mises, R. (1947). On the asy mptotic distributions of differentiable statistical functionals. Ann. Math. Statist. 18 309-348. · Zbl 0037.08401
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.