zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Bessel functions $J\sb n(z)$ and $Y\sb n(z)$ of integer order and complex argument. (English) Zbl 0878.65012
Summary: This paper describes computer subroutines which were developed to compute Bessel functions of the first and second kind ($J_n(z)$ and $Y_n(z)$, respectively) for a complex argument $z$ and a range of integer orders. A novel way of determining the starting point of backward recurrence is used, and the algorithm for $Y_n(z)$ improves on previous algorithms in terms of accuracy and restrictions on the range of orders.

65D20Computation of special functions, construction of tables
33C10Bessel and Airy functions, cylinder functions, ${}_0F_1$
Full Text: DOI
[1] Blachman, N. M.: IEEE trans. Aerospace elec. Sys.. 22, 2 (1986)
[2] Abramowitz, M.; Stegun, I. A.: Handbook of mathematical functions. (1964) · Zbl 0171.38503
[3] Ardill, R. W. B.; Moriarty, K. J. M.: Comput. phys. Commun.. 17, 321 (1979)
[4] Sookne, D. J.: NBS J. Res. B. 77, 111 (1973) · Zbl 0289.33020
[5] Du Toit, C. F.: IEEE trans. Antennas propag.. 38, 1341 (1990)
[6] Amos, E.: ACM trans. Math. software. 12, 265 (1986)
[7] Campbell, J. B.: Comput. phys. Commun.. 18, 133 (1979)
[8] Papoulis, A.: The Fourier integral and its applications. (1962) · Zbl 0108.11101
[9] Stegun, I. A.; Abramowitz, M.: Math. tables aids comput.. 11, 255 (1957)
[10] Goldstein, M.; Thaler, R. M.: Math. tables aids comput.. 13, 102 (1959)
[11] Luke, Y. L.: Math. comput.. 26, 237 (1972)
[12] Du Toit, C. F.: The computation of electromagnetic fields from cylindrical near-field measurements at non-asymptotic distances from an antenna. Ph.d. thesis (1992)