zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Competitive exclusion in a vector-host model for the dengue fever. (English) Zbl 0878.92025
Summary: We study a system of differential equations that models the population dynamics of an $SIR$ vector transmitted disease with two pathogen strains. This model arose from our study of the population dynamics of dengue fever. The dengue virus presents four serotypes each inducing host immunity but only certain degree of cross-immunity to heterologous serotypes. Our model has been constructed to study both the epidemiological trends of the disease and conditions that permit coexistence in competing strains. Dengue is in the Americas an epidemic disease and our model reproduces this kind of dynamics. We consider two viral strains and temporary cross-immunity. Our analysis shows the existence of an unstable endemic sate (`saddle’ point) that produces a long transient behavior where both dengue serotypes cocirculate. Conditions for asymptotic stability of equilibria are discussed supported by numerical simulations. We argue that the existence of competitive exclusion in this system is product of the interplay between the host superinfection process and frequency-dependent (vector to host) contact rates.

34D05Asymptotic stability of ODE
Full Text: DOI