×

Some remarks on Lorenzen \(r\)-group of partly ordered groups. (English) Zbl 0879.20031

A lot of problems concerning arithmetics of integral domains lead to the ideal theory of a ring and even to the abstract ideal theory of a semigroup. The investigation of these questions is involved in the theory of partially ordered groups. One of the most important notions of this theory, an \(r\)-system of ideals investigated by P. Lorenzen [Math. Z. 45, 533-553 (1939; Zbl 0021.38703)], is defined as follows.
Let \(G\) be a directed partially ordered commutative group. An \(r\)-system of ideals in \(G\) is a map \(X\to X_r\) from the set of all lower bounded (or only finite) subsets of \(G\) satisfying the following conditions: (1) \(X\subseteq X_r\), (2) \(X\subseteq Y_r\Rightarrow X_r\subseteq Y_r\), (3) \(\{a\}_r=a\cdot G^+=(a)\) for all \(a\in G\), (4) \(a\cdot X_r=(a\cdot X)_r\) for all \(a\in G\).
The set \(X_r\) is called an \(r\)-ideal of \(G\). The inclusion relation on the set of all \(r\)-ideals forms an order and the operation \(\times\) on this set is defined by \(X_r\times Y_r=(X_r\cdot Y_r)_r=(X\cdot Y)_r\). If \(\{x\in G:x\cdot X_r\subseteq X_r\}\subseteq G^+\) for each \(r\)-ideal \(X_r\) (\(X\) is finite), then \(G\) is called \(r\)-closed. In this case another \(r\)-system \(r_a\) in \(G\) is defined by \(A_{r_a}=\{g\in G:g\cdot K_r\subseteq A_r\times K_r,\text{ for some finite }K\subset G\}\) for each finite subset \(A\) of \(G\). The semigroup of all \(r_a\)-ideals with the operation \(\times\) satisfies the cancellation law and its quotient group \(\Lambda_r(G)\) is called the Lorenzen \(r\)-group of \(G\). The group \(\Lambda_r(G)\) forms a lattice ordered group if \(\Lambda_r(G)^+=\{A_{r_a}/B_{r_a}:A_{r_a}\subseteq B_{r_a}\}\).
The goal of this article is to study similarities of some properties of directed po-groups and their Lorenzen groups. The relationships between the structure of o-ideals in a directed po-group and some \(\ell\)-ideals of its Lorenzen \(r\)-group are investigated. A great part of this paper is devoted to the po-groups possessing a theory of quasi-divisors (generalizing the notion of the theory of divisors). If the quasi-divisors have a finite character, then for a special \(r\)-system of ideals the Lorenzen group is isomorphic to a special \(\ell\)-group of “compatible elements” of the product \(\prod_{w\in W}G_w\), where \(W\) is a defining family of certain valuations (\(t\)-valuations) on \(G\).
Finally, the authors show that a po-group \(G\) with a theory of quasi-divisors and its Lorenzen group \(\Lambda_r(G)\) have analogous properties in case the \(v\)-system and \(t\)-system are equal. (The systems \(v\) and \(t\) are defined in the usual way and an \(r\)-system is given).
Reviewer: L.Skula (Brno)

MSC:

20M12 Ideal theory for semigroups
20F60 Ordered groups (group-theoretic aspects)
13A05 Divisibility and factorizations in commutative rings
06F20 Ordered abelian groups, Riesz groups, ordered linear spaces
06F15 Ordered groups
20M14 Commutative semigroups
13A15 Ideals and multiplicative ideal theory in commutative rings

Citations:

Zbl 0021.38703
Full Text: DOI

References:

[1] Anderson, M., Feil, T.: Lattice-Ordered Groups. D.Reidl Publ.Co., Dordrecht, Tokyo, 1988. · Zbl 0636.06008
[2] Aubert, K.E.: Divisors of finite character. Annali di matem. pura ed appl. 33 (1983), 327-361. · Zbl 0533.20034 · doi:10.1007/BF01766024
[3] Aubert, K.E.: Localizations dans les systémes d’idéaux. C. R. Acad. Sci. Paris 272 (1971), 465-468. · Zbl 0216.05001
[4] Borewicz-Shafarevicz: Number Theory. Academic Press, New York, 1966.
[5] Chouinard, L.G.: Krull semigroups and divisor class group. Can. J. Math. 33 (1981), 1459-1468. · Zbl 0453.13005 · doi:10.4153/CJM-1981-112-x
[6] Geroldinger, A., Močkoř, J.: Quasi divisor theories and generalizations of Krull domains. to appear in J. Pure Appl. Algebra. · Zbl 0853.13012 · doi:10.1016/0022-4049(94)00088-Z
[7] Gilmer, R.: Multiplicative Ideal Theory. M. Dekker, Inc., New York, 1972. · Zbl 0248.13001
[8] Griffin, M.: Rings of Krull type. J. reine angew. Math. 229 (1968), 1-27. · Zbl 0173.03504 · doi:10.1515/crll.1968.229.1
[9] Griffin, M.: Some results on v-multiplication rings. Can. J. Math. 19 (1967), 710-722. · Zbl 0148.26701 · doi:10.4153/CJM-1967-065-8
[10] Halter-Koch, F.: Ein Approximationssatz für Halbgruppen mit Divisorentheorie. Results in Math. 19 (1991), 74-82. · Zbl 0742.20060 · doi:10.1007/BF03322417
[11] Halter-Koch, F., Geroldinger, A.: Realization theorems for semigroups with divisor theory. Semigroup Forum 201 (1991), 1-9. · Zbl 0751.20045 · doi:10.1007/BF02574342
[12] Jaffard, P.: Les systémes d’idéaux. Dunod, Paris, 1960. · Zbl 0101.27502
[13] Lorenzen, P.: Abstrakte Begründung der multiplikativen Idealtheorie. Math. Z. 45 (1993), 533-553. · Zbl 0021.38703 · doi:10.1007/BF01580299
[14] Močkoř, J.: Groups of Divisibility. D.Reidl Publ. Co., Dordrecht, 1983. · Zbl 0528.13001
[15] Močkoř, J., Alajbegovic, J.: Approximation Theorems in Commutative Algebra. Kluwer Academic Publ., Dordrecht, 1992. · Zbl 0772.13001
[16] Močkoř, J., Kontolatou, A.: Groups with quasi divisor theory. Comm. Math. Univ. St. Pauli, Tokyo 42 (1993), 23-36. · Zbl 0794.06015
[17] Močkoř, J., Kontolatou, A.: Divisor class groups of ordered subgroups. Acta Math. Inf. Univ. Ostrav. 1 (1993). · Zbl 0849.06013
[18] Močkoř, J., Kontolatou, A.: Quasi-divisors theory of partly ordered groups. Grazer Math. Ber. 318 (1992), 81-98. · Zbl 0794.06014
[19] Močkoř, J.: \(t\)-Valuation and theory of quasi-divisors. to appear.
[20] Ohm, J.: Semi-valuations and groups of divisibility. Can. J. Math. 21 (1969), 576-591. · Zbl 0177.06501 · doi:10.4153/CJM-1969-065-9
[21] Skula, L.: Divisorentheorie einer Halbgruppe. Math. Z. 114 (1970), 113-120. · Zbl 0177.03202 · doi:10.1007/BF01110320
[22] Skula, L.: On \(c\)-semigroups. Acta Arith. 31 (1976), 247-257. · Zbl 0303.13014
[23] Zafrullah, M.: Well behaved prime \(t\)-ideals. Jour. Pure and Appl. Algebra 65 (1990), . · Zbl 0705.13001 · doi:10.1016/0022-4049(90)90119-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.