×

On the structure and arithmetic of finitely primary monoids. (English) Zbl 0879.20032

The paper deals with commutative cancellative monoids. The author characterizes primary monoids in this class, studies the integral closures and complete integral closures of primary monoids, and gives a characterization of finitely primary monoids in terms of their complete integral closures. Further he characterizes integral domains with finitely primary multiplicative monoids and studies the arithmetic of finitely primary monoids.

MSC:

20M14 Commutative semigroups
20M25 Semigroup rings, multiplicative semigroups of rings
13G05 Integral domains
13B22 Integral closure of commutative rings and ideals
PDF BibTeX XML Cite
Full Text: EuDML

References:

[1] A. Anjaneyulu: On primary semigroups. Czech. Math. J. 30 (1980), 382-386. · Zbl 0447.20045
[2] A. Geroldinger: The complete integral closure of monoids and domains. PU.M.A. 4 (1993), 147-165. · Zbl 0805.20055
[3] A. Geroldinger: T-block monoids and their arithmetical applications to certain integral domains. Comm. Algebra 22 (1994), 1603-1615. · Zbl 0809.13013
[4] A. Geroldinger and F. Halter-Koch: Arithmetical theory of monoid homomorphisms. Semigroup Forum 48 (1994), 333-362. · Zbl 0805.20057
[5] A. Geroldinger, F. Halter-Koch and G. Lettl: The complete integral closure of monoids and domains II. Rendiconti di Matematica (Roma) 15 (1995), 281-292. · Zbl 0837.20073
[6] A. Geroldinger and G. Lettl: Factorization problems in semigroups. Semigroup Forum 40 (1990), 23-38. · Zbl 0693.20063
[7] R. Gilmer: Multiplicative ideal theory. Queen’s Papers (1992). · Zbl 0804.13001
[8] R. Gilmer: Commutative semigroup rings. The University of Chicago Press (1984). · Zbl 0566.20050
[9] F. Halter-Koch: Divisor theories with primary elements and weakly Krull domains. Boll. U. M. I. 9-B (1995), 417-441. · Zbl 0849.20041
[10] F. Halter-Koch: Elasticity of factorizations in atomic monoids and integral domains. J. Th. Nombres Bordeaux 7 (1995), 367-385. · Zbl 0844.11068
[11] F. Halter-Koch: The integral closure of a finitely generated monoid and the Frobenius problem in higher dimensions. Semigroups, edited by C. Bonzini, A. Cherubini and C. Tibiletti, World Scientific (1993), 86-93. · Zbl 0818.20079
[12] F. Halter-Koch: Finiteness theorems of factorizations. Semigroup Forum 44 (1992), 112-117. · Zbl 0751.20046
[13] F. Halter-Koch: Zur Zahlen- und Idealtheorie eindimensionaler noetherscher Integritätsbereiche. J. Algebra 136 (1991), 103-108. · Zbl 0743.13001
[14] H.C. Hutchins: Examples of commutative rings. Polygonal Publishing House (1981). · Zbl 0492.13001
[15] I. Kaplansky: Commutative rings. Allyn and Bacon (1970). · Zbl 0203.34601
[16] G. Karpilovsky: Field theory. Marcel Dekker (1988). · Zbl 0677.12010
[17] H. Matsumura: Commutative ring theory. Cambridge University Press (1986). · Zbl 0603.13001
[18] J. Neukirch: Algebraische Zahlentheorie. Springer (1992). · Zbl 0747.11001
[19] M. Petrich: Introduction to semigroups. Charles E. Merrill Publishing Co. (1973). · Zbl 0321.20037
[20] M. Satyanarayana: Commutative primary semigroups. Czech. Math. J. 22 (1972), 509-516. · Zbl 0248.20072
[21] T. Tamura: Basic study of \(N\)-semigroups and their homomorphisms. Semigroup Forum 8 (1974), 21-50. · Zbl 0275.20110
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.