zbMATH — the first resource for mathematics

The \(p\)-harmonic system with measure-valued right hand side. (English) Zbl 0879.35052
For \(2-1/n<p<n\) one proves existence of a distributional solution \(u\) of the \(p\)-harmonic system \[ -\text{div}(|\nabla u|^{p-2}\nabla u)= \mu\quad\text{in }\Omega,\quad u=0\quad\text{on }\partial\Omega, \] where \(\Omega\) is an open subset of \(\mathbb{R}^n\) (bounded or unbounded), \(u:\Omega\to\mathbb{R}^n\), and \(\mu\) is an \(\mathbb{R}^m\)-valued Radon measure of finite mass. For the solution \(u\) one establishes the Lorentz space estimate \[ |Du|_{Lq,\infty}+|u|_{Lq^*,\infty}\leq C|\mu|M_{1/(p-1)}, \] \(q=n/(n-1)(p-1)\) and \(q^*=n/(n-p)(p-1)\). The main step of the proof is to show that for suitable approximations the gradients \(Du_k\) converge. This is achieved by the choice of regularized test functions and a localization argument to compensate the fact that in general \(u\not\in W_{1,p}\).

35J60 Nonlinear elliptic equations
35R05 PDEs with low regular coefficients and/or low regular data
35D05 Existence of generalized solutions of PDE (MSC2000)
Full Text: DOI Numdam EuDML
[1] Bénilan, P.; Boccardo, L.; Gallouët, T.; Gariepy, R.; Pierre, M.; Vazquez, J.L., An L1-theory of existence and uniqueness of solutions of nonlinear elliptic equations, Ann. scuola norm. sup. Pisa cl. sci., Vol. 22, 4, 241-273, (1995) · Zbl 0866.35037
[2] Boccardo, L.; Gallouët, T., Nonlinear elliptic and parabolic equations involving measure data, J. funct. anal., Vol. 87, 149-169, (1989) · Zbl 0707.35060
[3] Boccardo, L.; Gallouët, T., Nonlinear elliptic equations with right-hand side measures, Comm. part. diff. eqn., Vol. 17, 641-655, (1992) · Zbl 0812.35043
[4] Boccardo, L.; Murat, F., Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations, Nonlinear anal., Vol. 19, 581-597, (1992) · Zbl 0783.35020
[5] Chen, Y.; Hong, M.-C.; Hungerbühler, N., Heat flow of p-harmonic maps with values into spheres, Math. Z., Vol. 215, 25-35, (1994) · Zbl 0793.53049
[6] Dibenedetto, E.; Manfredi, J., On the higher integrability of the gradient of weak solutions of certain degenerate elliptic systems, Am. J. math., Vol. 115, 1107-1134, (1993) · Zbl 0805.35037
[7] Evans, L.C., Weak convergence methods for nonlinear partial differential equations, (), No. 74 · Zbl 0349.34043
[8] Evans, L.C.; Gariepy, R., Measure theory and fine properties of functions, (1992), CRC Press Boca Raton, (etc.) · Zbl 0804.28001
[9] Fuchs, M., The Green-matrix for elliptic systems which satisfy the Legendre-Hadamard condition, Manuscr. math., Vol. 46, 97-115, (1984) · Zbl 0552.35025
[10] Fuchs, M., The Green matrix for strongly elliptic systems of second order with continuous coefficients, Z. anal. anwend., Vol. 5, 6, 507-531, (1986) · Zbl 0634.35023
[11] Fuchs, M., The blow-up of p-harmonic maps, Manuscr. math., Vol. 81, 89-94, (1993) · Zbl 0794.58012
[12] Fuchs, M.; Reuling, J., Non-linear elliptic systems involving measure data, Rend. math. appl., Vol. 15, 311-319, (1995) · Zbl 0838.35133
[13] Grüter, M.; Widman, K.-O., The Green function for uniformly elliptic equations, Manuscr. math., Vol. 37, 303-342, (1982) · Zbl 0485.35031
[14] {\scP. L. Lions} and {\scF. Murat}, Solutions renormalisées d’equations elliptiques (to appear).
[15] Müller, S., Det = det. A remark on the distributional determinant, C.R. acad. sci., Paris, Sér. I, Vol. 311, 13-17, (1990) · Zbl 0717.46033
[16] {\scF. Murat}, Équations elliptiques non linéaires avec second membre L1 ou mesure. Preprint.
[17] Murat, F., Soluciones renormalizadas de EDP elipticas no lineales, ()
[18] Rakotoson, J.M., Generalized solutions in a new type of sets for problems with measure data, Differ. integral eqn., Vol. 6, 27-36, (1993) · Zbl 0780.35047
[19] Talenti, G., Nonlinear elliptic equations, rearrangements of functions and Orlicz spaces, Ann. mat. pura appl., IV. ser., Vol. 120, 159-184, (1979) · Zbl 0419.35041
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.