×

zbMATH — the first resource for mathematics

Global existence, decay, and blowup of solutions for some mildly degenerate nonlinear Kirchhoff strings. (English) Zbl 0879.35110
The equation of the Kirchhoff string is the following: \[ \rho h {\partial^2u\over\partial t^2}= \Biggl\{p_0+{Eh\over 2L}\int^L_0 \Biggl({\partial u\over\partial x}\Biggr) dx\Biggr\} {\partial^2u\over\partial x^2} u(0,x)= u_0(x), \] for \(0<x<L\), \(t\geq 0\), where \(u=u(x,t)\) is the lateral displacement at the space coordinate \(x\) and the time \(t\), \(E\) the Young modulus, \(\rho\) the mass density, \(h\) the cross-section area, \(L\) the length, \(p_0\) the initial axis tension. In this paper, the author considers the initial value problem for the second-order hyperbolic equations generalizing the Kirchhoff strings: \[ u''+ M(|A^{1/2}u|^2)Au+\delta u'= f(u)\quad\text{in }\Omega\times [0,\infty), \]
\[ u(x,0)= u_0(x),\;u'(x,0)= u_1(x)\quad\text{and}\quad u(x,t)|_{\partial\Omega}=0, \] where \(\Omega\) is a bounded domain in \(\mathbb{R}^N\) with smooth boundary \(\partial\Omega\), \('=\partial_t\equiv=\partial/\partial t\); \(A=-\Delta\) is the Laplace operator with domain \({\mathcal D}={\mathcal H}^\varepsilon(\otimes)\cap{\mathcal H}^\infty_{\prime}(\otimes)\), \(|\cdot|\) is the norm of \(L^2(\Omega)\), \(\delta\geq 0\), \(f(u)=|u|^\alpha u\) with \(\alpha>0\), \(M(r)\) is a nonnegative locally Lipschitz function for \(r\geq 0\) like \(M(r)a+ br^\gamma\) with \(a\geq 0\), \(b\geq 0\), \(a+b>0\), and \(\gamma>0\).
He gives the local existence theorem and the global existence and decay properties of solutions for degenerate (i.e. \(a=0\)) and non-degenerate (i.e. \(a>0\)) equations with a dissipative term, respectively. And he also studies the blow up problem in cases of initial energy being nonpositive and positive, respectively.
Reviewer: A.Tsutsumi (Osaka)

MSC:
35L70 Second-order nonlinear hyperbolic equations
35B40 Asymptotic behavior of solutions to PDEs
35L15 Initial value problems for second-order hyperbolic equations
74K05 Strings
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Arosio, A.; Garavaldi, S., On the mildly degenerate Kirchhoff string, Math. methods appl. sci., 14, 177-195, (1991) · Zbl 0735.35094
[2] Crippa, H.R., On local solutions of some mildly degenerate hyperbolic equations, Nonlinear anal., 21, 565-574, (1993) · Zbl 0808.35076
[3] D’Ancona, P.; Spagnolo, S., Global solvability for the degenerate Kirchhoff equation with real analytic data, Invent. math., 108, 247-262, (1992) · Zbl 0785.35067
[4] D’Ancona, P.; Spagnolo, S., Nonlinear perturbations of the Kirchhoff equation, Comm. pure appl. math., 47, 1005-1029, (1994) · Zbl 0807.35093
[5] Dickey, R.W., Infinite systems of nonlinear oscillation equation with linear damping, SIAM J. appl. math, 19, 208-214, (1970) · Zbl 0233.34014
[6] Ebihara, Y.; Kawashima, S.; Levine, H.A., On solutions tou_{tt}−|xαδufuα, Funkcial. ekvac., 38, 539-544, (1995) · Zbl 0842.35063
[7] Ikehata, R., A note on the global solvability of solutions to some nonlinear wave equations with dissipative terms, Differential integral equations, 8, 607-616, (1995) · Zbl 0812.35081
[8] Ishii, H., Asymptotic stability and blowing-up of solutions of some nonlinear equations, J. differential equations, 26, 291-319, (1977) · Zbl 0339.34062
[9] Kirchhoff, G., Vorlesungen über mechanik, (1883), Teubner Leipzig · JFM 08.0542.01
[10] Levine, H.A., Instability and nonexistence of global solutions to nonlinear wave equations of the formpu_{tt}=−auu, Trans. amer. math. soc., 192, 1-21, (1974) · Zbl 0288.35003
[11] Levine, H.A., Nonexistence of global weak solutions to some properly and improperly posed problems of mathematical physics: the method of unbounded Fourier coefficients, Math. ann., 214, 205-220, (1975) · Zbl 0286.35006
[12] Li, T.-T.; Zhou, Y., Breakdown of solutions to □uut=|u1+α, Discrete contin. dynam. systems, 1, 503-520, (1995)
[13] Nakao, M., Decay of solutions of some nonlinear wave equations in one space dimension, Funkcial. ekvac, 20, 223-236, (1977) · Zbl 0381.35057
[14] Nakao, M., A difference inequality and its application to nonlinear evolution equations, J. math. soc. Japan, 30, 747-762, (1978) · Zbl 0388.35007
[15] Nakao, M.; Ono, K., Existence of global solutions to the Cauchy problem for the semilinear dissipative wave equations, Math. Z., 214, 325-342, (1993) · Zbl 0790.35072
[16] Nishihara, K., On a global solution of some quasilinear hyperbolic equation, Tokyo J. math., 7, 437-459, (1984) · Zbl 0586.35059
[17] Nishihara, K.; Yamada, Y., On global solutions of some degenerate quasilinear hyperbolic equations with dissipative terms, Funkcial. ekvac., 33, 151-159, (1990) · Zbl 0715.35053
[18] Ohta, M., Blowup of solutions of dissipative nonlinear wave equations, Hokkaido math. J., 26, 115-124, (1997) · Zbl 0884.35103
[19] M. Ohta, Remarks on blowup of solutions for nonlinear evolution equations of second order · Zbl 0920.35025
[20] Ono, K., On global existence, asymptotic stability and blowing up of solutions for some degenerate nonlinear wave equations of Kirchhoff type with a strong dissipation, Math. methods appl. sci., 20, 151-177, (1997) · Zbl 0878.35081
[21] K. Ono, Global existence and decay properties of solutions for some mildly degenerate nonlinear dissipative Kirchhoff strings, Funkcial. Ekvac. · Zbl 0891.35100
[22] Ono, K., Blowup phenomena for nonlinear dissipative wave equations, J. math. tokushima univ., 30, 19-43, (1996) · Zbl 0923.35098
[23] Payne, L.E.; Sattinger, D.H., Saddle points and instability of nonlinear hyperbolic equations, Israel J. math., 22, 273-303, (1975) · Zbl 0317.35059
[24] Pohozaev, S.I., On a class of quasilinear hyperbolic equations, Math. USSR sbornik, 25, 145-158, (1975) · Zbl 0328.35060
[25] Rivera, J.E.M., On local strong solutions of a nonlinear partial differential equation, Appl. anal., 10, 93-104, (1980) · Zbl 0451.35042
[26] Sattinger, D.H., On global solution of nonlinear hyperbolic equations, Arch. rational mech. anal., 30, 148-172, (1968) · Zbl 0159.39102
[27] Souplet, P., Nonexistence of global solutions to some differential inequalities of the second order and applications, Portugal math., 52, 289-299, (1995) · Zbl 0843.34017
[28] Strauss, W.A., On continuity of functions with values in various Banach spaces, Pacific J. math., 19, 543-551, (1966) · Zbl 0185.20103
[29] Temam, R., Infinite dimensional dynamical systems in mechanics and physics, Applied mathematical sciences, 68, (1988), Springer-Verlag New York
[30] Tsutsumi, M., On solutions of semilinear differential equations in a Hilbert space, Math. Japan, 17, 173-193, (1972) · Zbl 0273.34044
[31] Yamada, Y., Some nonlinear degenerate wave equations, Nonlinear anal., 11, 1155-1168, (1987) · Zbl 0641.35044
[32] Yamazaki, T., On local solutions of some quasilinear degenerate hyperbolic equations, Funkcial ekvac., 31, 439-457, (1988) · Zbl 0689.35056
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.