Allaire, Grégoire; Malige, François Spectral asymptotic analysis of a neutronic diffusion problem. (Analyse asymptotique spectrale d’un problème de diffusion neutronique.) (French. Abridged English version) Zbl 0879.35153 C. R. Acad. Sci., Paris, Sér. I 324, No. 8, 939-944 (1997). Summary: We study the homogenization of an eigenvalue problem for neutronic diffusion in a periodic heterogeneous domain. Using a model with an ad hoc scaling of the coefficients (preserving physical intrinsic properties), we prove a convergence theorem justifying the method used in computations for cores of nuclear reactors. Finally, we indicate some possible generalizations. Cited in 13 Documents MSC: 35Q72 Other PDE from mechanics (MSC2000) 82D75 Nuclear reactor theory; neutron transport 35B27 Homogenization in context of PDEs; PDEs in media with periodic structure Keywords:homogenization of an eigenvalue problem for neutronic diffusion; periodic heterogeneous domain PDF BibTeX XML Cite \textit{G. Allaire} and \textit{F. Malige}, C. R. Acad. Sci., Paris, Sér. I 324, No. 8, 939--944 (1997; Zbl 0879.35153) Full Text: DOI OpenURL