Casas, E.; Tröltzsch, F.; Unger, A. Second order sufficient optimality conditions for a nonlinear elliptic boundary control problem. (English) Zbl 0879.49020 Z. Anal. Anwend. 15, No. 3, 687-707 (1996). Let \(\varphi:\mathbb{R}\to\mathbb{R}\), \(\psi,b:\mathbb{R}\times\mathbb{R}\to\mathbb{R}\) and all derivatives up to second-order be globally Lipschitz continuous, \(b(.,y)\) decreasing for all \(y\in\mathbb{R}\); \(\Omega\) a bounded domain of \(\mathbb{R}^n\) with a sufficiently smooth boundary such that \(W^{1,p}(\Omega)\) is continuously embedded in \(C(\overline\Omega)\) and \(w(u)\in W^{1,p}(\Omega)\) for some \(p>n\), where \(u\in U\equiv\{u\in L^\infty(\partial\Omega): m\leq u\leq M\}\) and \(m,M\in\mathbb{R}\), \[ \int_\Omega \Biggl(\sum^n_{i=1} \partial_iw(u)\partial_iv+ w(u)v\Biggr)dx= \int_{\partial\Omega} b(w(u),u)vd\sigma\quad\text{for all }v\in W^{1,2}(\Omega), \]\[ |w(u_1)- w(u_2)|_{W^{1,p}(\Omega)}\leq c_p|u_1- u_2|_{L^p(\partial\Omega)}\quad\text{for }c_p>0; \]\[ L:(C(\overline\Omega)\cap W^{1,2}(\Omega))\times U\times(C(\overline\Omega)\cap W^{1,2}(\Omega))\to \mathbb{R}, \]\[ L(w,u,v)= \int_\Omega\varphi\circ wdx+ \int_{\partial\Omega} \psi(w,u)d\sigma-\int_\Omega \Biggl(\sum^n_{i=1} \partial_iw\partial_iv+ wv\Biggr)dx+ \int_{\partial\Omega}b(w,u)vd\sigma. \] Theorem. Let \(u_0\in U\), \(v_0\in C(\overline\Omega)\cap W^{1,2}(\Omega)\) such that \[ \int_{\partial\Omega} (\partial_2\psi(w(u_0),u_0)+ \partial_2b(w(u_0),u_0)v_0)(u- u_0)d\sigma\geq 0\quad\text{for all }u\in U, \]\[ \begin{split}\int_\Omega \Biggl(\sum^n_{i=1}\partial_i v_0\partial_iv+ v_0v- \varphi'\circ w(u_0)v\Biggr)dx=\\ \int_{\partial\Omega}(\partial_1b(w(u_0),u_0)v_0+ \partial_1\psi(w(u_0),u_0))vd\sigma\text{ for all }v\in W^{1,2}(\Omega);\end{split} \] let \(\varepsilon>0\) and \[ \Gamma_\varepsilon= \{x\in\partial\Omega:|\partial_2 \psi(w(u_0)(x), u_0(x))+ \partial_2b(w(u_0)(x), u_0(x))v_0(x)|\geq \varepsilon\}; \] suppose that there exists \(\alpha>0\) such that \[ L(.,.,v_0)''(w(u_0),u_0)((h,u- u_0),(h,u- u_0))\geq\alpha|(h,u- u_0)|^2_{W^{1,2}(\Omega)\times L^2(\partial\Omega)}\text{ for }u\in U \] such that \(u(x)= u_0(x)\) for a.e. \(x\in\Gamma_\varepsilon\) and where \(h\) is such that \[ \begin{split} \int_\Omega \Biggl(\sum^n_{i=1} \partial_ih\partial_iv+ hv\Biggr)dx=\\ \int_{\partial\Omega}(\partial_1b(w(u_0),u_0)h+ \partial_2b(w(u_0),u_0)(u- u_0))vd\sigma\text{ for all }v\in W^{1,2}(\Omega).\end{split} \] Then there exist \(\beta>0\) and \(\rho>0\) such that \[ L(w(u),u,v_0)\geq L(w(u_0),u_0,v_0)+ \beta|(w(u),u)- (w(u_0),u_0)|^2_{W^{1,2}(\Omega)\times L^2(\partial\Omega)}\text{ for all }u\in U \] such that \[ |(w(u),u)- (w(u_0),u_0)|^2_{W^{1,p}(\Omega)\times L^q(\partial\Omega)}\leq\rho\text{ for }q=\infty; \] for \(q=p\) if furthermore \(b(w,u)= b_1(w)+ b_2(w)u\) and \(\psi(w,u)= \psi_1(w)+ \psi_2(w)u+\gamma u^2\), where \(\gamma\geq 0\) and \(\psi_1,\psi_2,b_1,b_2:\mathbb{R}\to \mathbb{R}\) and all derivatives up to second-order are globally Lipschitz continuous. Reviewer: G.Bottaro (Genova) Cited in 1 ReviewCited in 20 Documents MSC: 49K20 Optimality conditions for problems involving partial differential equations 35J99 Elliptic equations and elliptic systems 49K27 Optimality conditions for problems in abstract spaces Keywords:sufficient optimality conditions; nonlinear elliptic boundary control × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Adams, R. A.: Sobolev Spaces (Pure and Applied Mathematics: Vol. 65). New York: Academic Press Inc. 1978. [2] Casas, E.: Pontryagin’s Principle for Optimal Control Problems Governed by Semilinear Elliptic Equations (International Series of Numerical Mathematics (ISNM): Vol. 118). Basel: Birkhãuser Verlag 1994, pp. 97 - 114. · Zbl 0810.49025 [3] Casas, E. and J. Yong: Maximum principle for state-constrained optimal control problems governed by quasilinear elliptic equations. Duff. mt. Equ. 8 (1995), 1 - 18. · Zbl 0817.49025 [4] Collatz, L. and W. Wetterling: Optimiernngsaufgaben (2. Aufi.). Berlin-Heidelberg-New York: Springer-Verlag 1971. [5] Dontchev, A. L., Hager, W. W., Poore, A. B. and B. Yang: Optimality, stability, and convergence in nonlinear control. Appi. Math. Optim. 31(1995), 297 - 326. · Zbl 0821.49022 · doi:10.1007/BF01215994 [6] Eppler, K. and A. Unger: Boundary control of semilinear elliptic equations - existence of optimal solutions. Control and Cybernetics 1995 (to appear). (7] Goldberg, H. and F. Tröltzsch: Second order optimality conditions for a class of control problems governed by non-linear integral equations with applications to parabolic boundary control. Optimization 20 (1989), 687 - 698. [7] Goldberg, H. and F. Tróltzsch: Second-order sufficient optimality conditions for a class of nonlinear parabolic boundary control problems. SIAM J. Control Optim. 31 (1993), 1007 - 1025. · Zbl 0787.49011 · doi:10.1137/0331045 [8] [10] loffe, A. D.: Necessary and sufficient conditions for a local minimum. Part 3: Second order conditions and augmented duality. SIAM J. Control Optim. 17 (1979), 266 - 288. · Zbl 0417.49029 · doi:10.1137/0317021 [9] Kinderlehrer, D. and G. Stampacchia: An Introduction to Variational Inequalities and their Applications. New York: Academic Press 1980. · Zbl 0457.35001 [10] Ladyzhenskaya, 0. A. and N. N. Ural’tseva: Linear and Quasilinear Elliptic Equations. New York - London: Academic Press 1968. · Zbl 0164.13002 [11] Malanowski, K.: Sufficient optimality, conditions in optimal control. Technical report. Warsaw: Systems Res. Inst. Polish Acad. Sci. 1994. · Zbl 0810.49009 [12] Maurer, H.: First and second order sufficient optimality conditions in mathematical pro- gramming and optimal control. Math. Progr. Study 14 (1981), 163 - 177. · Zbl 0448.90069 · doi:10.1007/BFb0120927 [13] [16] Tiba, D.: Lectures on the Optimal Control of Elliptic Equations (Lecture Notes: Vol. 32). Jyvàskylä: Univ./ Dep. Math. 1995. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.