Herzog, G. On existence and uniqueness conditions for ordinary differential equations in Fréchet spaces. (English) Zbl 0880.34066 Stud. Sci. Math. Hung. 32, No. 3-4, 367-375 (1996). Let \(F\) be a real or complex Fréchet space. Let \(\emptyset\neq D\subseteq F\) and let \(f:[0,T]\times D\to F\). Existence and uniqueness conditions are given for the solutions of the initial value problem \(u'(t)=f(t,u(t))\), \(u(0)=u_0\). The conditions are formulated as Lipschitz and one-sided Lipschitz conditions using a generalized distance and row-finite, monotone and quasimonotone matrices. Reviewer: Tibor Krisztin (Szeged) Cited in 1 Document MSC: 34G20 Nonlinear differential equations in abstract spaces 47J25 Iterative procedures involving nonlinear operators Keywords:polynorm; row-finite matrix; quasimonotone; initial value problem PDF BibTeX XML Cite \textit{G. Herzog}, Stud. Sci. Math. Hung. 32, No. 3--4, 367--375 (1996; Zbl 0880.34066) OpenURL