Han, Bin On dual wavelet tight frames. (English) Zbl 0880.42017 Appl. Comput. Harmon. Anal. 4, No. 4, 380-413 (1997). Summary: A characterization of multivariate dual wavelet tight frames for any general dilation matrix is presented in this paper. As an application, Lawton’s result on wavelet tight frames in \(L^2(\mathbb{R})\) is generalized to the \(n\)-dimensional case. Two ways of constructing certain dual wavelet tight frames in \(L^2(\mathbb{R}^n)\) are suggested. Finally, examples of smooth wavelet tight frames in \(L^2(\mathbb{R})\) and \(H^2(\mathbb{R})\) are provided. In particular, an example is given to demonstrate that there is a function \(\psi\) whose Fourier transform is positive, compactly supported, and infinitely differentiable which generates a non-MRA wavelet tight frame in \(H^2(\mathbb{R})\). Cited in 3 ReviewsCited in 124 Documents MSC: 42C40 Nontrigonometric harmonic analysis involving wavelets and other special systems Keywords:multiresolution analysis; multivariate dual wavelet tight frames; dilation matrix; non-MRA wavelet tight frame × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Auscher, P., Il n’existe pas de bases d’ondelettes regulières dans l’espace de Hardy \(H^2R\), C. R. Acad. Sci. Paris Ser. I, 315, 769-772 (1992) · Zbl 0758.42019 [3] Bonami, A.; Soria, F.; Weiss, G., Band-limited wavelets, J. Geom. Anal., 3, 543-578 (1993) · Zbl 0811.42012 [4] Chui, C. K.; Shi, X., On a Littlewood-Paley identity and characterization of wavelets, Math. Anal. Appl., 177, 608-626 (1993) · Zbl 0782.42025 [5] Chui, C. K.; Shi, X., Bessel sequences and affine frames, Appl. Comput. Harmonic Anal., 1, 29-49 (1993) · Zbl 0788.42011 [6] Cohen, A.; Daubechies, I., A stability criterion for biorthogonal wavelet bases and their related subband coding scheme, Duke Math. J., 68, 313-335 (1992) · Zbl 0784.42022 [7] Cohen, A.; Daubechies, I.; Feauveau, J. C., Biorthogonal bases of compactly supported wavelets, Comm. Pure Appl. Math., 45, 485-560 (1992) · Zbl 0776.42020 [8] Daubechies, I., Orthonormal bases of compactly supported wavelets, Comm. Pure Appl. Math., 41, 906-996 (1988) · Zbl 0644.42026 [9] Daubechies, I., Ten Lectures on Wavelets. Ten Lectures on Wavelets, SIAM-NSF Regional Conference Series, 61 (1992), SIAM: SIAM Philadelphia · Zbl 0776.42018 [10] Han, B., Some applications of projection operators in wavelets, Acta Math. Sinica, 11, 105-112 (1995) · Zbl 0831.42022 [11] Hernández, E.; Wang, X.; Weiss, G., Smoothing minimally supported frequency (MSF) wavelets, J. Fourier Anal. & Appl., 2, 329-340 (1996) · Zbl 0944.42021 [12] Jia, R. Q.; Micchelli, C. A., Using the refinement equation for the construction of prewavelets. V. Extensibility of trigonometric polynomial, Computing, 48, 61-72 (1992) · Zbl 0765.65023 [13] Jia, R. Q.; Shen, Z. W., Multiresolution and Wavelets, Proc. Edinburgh Math. Soc., 37, 271-300 (1994) · Zbl 0809.42018 [14] Lawton, W. M., Tight Frames of Compactly Supported Affine Wavelets, J. Math. Phys., 31, 1898-1901 (Aug. 1990) · Zbl 0708.46020 [15] Lemarié-Rieusset, P. G., Ondelettes à Localisation Exponentielle, J. Math. Pures Appl., 67, 227-236 (1988) · Zbl 0758.42020 [16] Lemarié-Rieusset, P. G., Existence de Fonction-Père pour les Ondelettes à Support Compact, C. R. Acad. Sci. Paris, Sér. I, 314, 17-19 (1992) · Zbl 0752.42017 [17] Lemarié-Rieusset, P. G., Projecteurs Invariants, Matrices de Dilation, Ondelettes de Dimension \(n\), Rev. Mat. Iberoameri., 10, 283-347 (1994) · Zbl 0807.42025 [22] Wellend, G. V.; Lundberg, M., Construction of compact \(p\), Constr. Approx., 9, 347-370 (1993) · Zbl 0784.42026 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.