zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On dual wavelet tight frames. (English) Zbl 0880.42017
Summary: A characterization of multivariate dual wavelet tight frames for any general dilation matrix is presented in this paper. As an application, Lawton’s result on wavelet tight frames in $L^2(\bbfR)$ is generalized to the $n$-dimensional case. Two ways of constructing certain dual wavelet tight frames in $L^2(\bbfR^n)$ are suggested. Finally, examples of smooth wavelet tight frames in $L^2(\bbfR)$ and $H^2(\bbfR)$ are provided. In particular, an example is given to demonstrate that there is a function $\psi$ whose Fourier transform is positive, compactly supported, and infinitely differentiable which generates a non-MRA wavelet tight frame in $H^2(\bbfR)$.

42C40Wavelets and other special systems
Full Text: DOI
[1] Auscher, P.: Il n’existe pas de bases d’ondelettes regulières dans l’espace de hardyh2r. C. R. Acad. sci. Paris ser. I 315, 769-772 (1992) · Zbl 0758.42019
[2] P. Auscher, G. Weiss, M. V. Wickerhauser, 1992, Local sine and cosine bases of Coifman and Meyer and the construction of smooth wavelets, Wavelet: A Tutorial in Theory and Applications, 237, 578, Academic Press, San Diego · Zbl 0767.42009
[3] Bonami, A.; Soria, F.; Weiss, G.: Band-limited wavelets. J. geom. Anal. 3, 543-578 (1993) · Zbl 0811.42012
[4] Chui, C. K.; Shi, X.: On a Littlewood--Paley identity and characterization of wavelets. Math. anal. Appl. 177, 608-626 (1993) · Zbl 0782.42025
[5] Chui, C. K.; Shi, X.: Bessel sequences and affine frames. Appl. comput. Harmonic anal. 1, 29-49 (1993) · Zbl 0788.42011
[6] Cohen, A.; Daubechies, I.: A stability criterion for biorthogonal wavelet bases and their related subband coding scheme. Duke math. J. 68, 313-335 (1992) · Zbl 0784.42022
[7] Cohen, A.; Daubechies, I.; Feauveau, J. C.: Biorthogonal bases of compactly supported wavelets. Comm. pure appl. Math. 45, 485-560 (1992) · Zbl 0776.42020
[8] Daubechies, I.: Orthonormal bases of compactly supported wavelets. Comm. pure appl. Math. 41, 906-996 (1988) · Zbl 0644.42026
[9] Daubechies, I.: Ten lectures on wavelets. SIAM--NSF regional conference series 61 (1992) · Zbl 0776.42018
[10] Han, B.: Some applications of projection operators in wavelets. Acta math. Sinica 11, 105-112 (1995) · Zbl 0831.42022
[11] Hernández, E.; Wang, X.; Weiss, G.: Smoothing minimally supported frequency (MSF) wavelets. J. Fourier anal. & appl. 2, 329-340 (1996) · Zbl 0944.42021
[12] Jia, R. Q.; Micchelli, C. A.: Using the refinement equation for the construction of prewavelets. V. extensibility of trigonometric polynomial. Computing 48, 61-72 (1992) · Zbl 0765.65023
[13] Jia, R. Q.; Shen, Z. W.: Multiresolution and wavelets. Proc. Edinburgh math. Soc. 37, 271-300 (1994) · Zbl 0809.42018
[14] Lawton, W. M.: Tight frames of compactly supported affine wavelets. J. math. Phys. 31, 1898-1901 (Aug. 1990) · Zbl 0708.46020
[15] Lemarié-Rieusset, P. G.: Ondelettes à localisation exponentielle. J. math. Pures appl. 67, 227-236 (1988)
[16] Lemarié-Rieusset, P. G.: Existence de fonction-père pour LES ondelettes à support compact. C. R. Acad. sci. Paris, sér. I 314, 17-19 (1992) · Zbl 0752.42017
[17] Lemarié-Rieusset, P. G.: Projecteurs invariants, matrices de dilation, ondelettes de dimensionn. Rev. mat. Iberoameri. 10, 283-347 (1994) · Zbl 0807.42025
[18] Y. Meyer, 1990, Ondelettes et Opérateurs, I, II, Hermann, Paris · Zbl 0694.41037
[19] A. Ron, Z. Shen, Affine Systems inL2d): The Analysis of the Analysis Operator, J. Funct. Anal.
[20] X. Wang, 1995, Washington University
[21] E. Hernández, G. Weiss, 1996, A First Course in Wavelets, CRC Press, Boca Raton · Zbl 0885.42018
[22] Wellend, G. V.; Lundberg, M.: Construction of compactp. Constr. approx. 9, 347-370 (1993)