[1] |
M. J. Ablowitz, H. Segur, 1981, Solitons and the Inverse Scattering Transform, SIAM, Philadelphia · Zbl 0472.35002 |

[2] |
J. Stoer, R. Burlisch, 1980, Introduction to Numerical Analysis, Springer-Verlag, New York/Berlin |

[3] |
G. Dahlquist, A. Björck, 1974, Numerical Methods, Prentice--Hall, Englewood Cliffs, NJ |

[4] |
A. Pazy, 1983, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York/Berlin · Zbl 0516.47023 |

[5] |
G. B. Whitham, 1974, Linear and Nonlinear Waves, Wiley, New York · Zbl 0373.76001 |

[6] |
Burgers, J. M.: A mathematical model illustrating the theory of turbulence. Adv. appl. Mech. 1, 171 (1948) · Zbl 0030.04503 |

[7] |
Hopf, E.: The partial differential $equationut+uux= {\mu}$uxx. Commun. pure appl. Math. 3, 201 (1950) |

[8] |
Cole, J. D.: On a quasilinear parabolic equation occurring in aerodynamics. Quart. appl. Math. 9, 225 (1951) · Zbl 0043.09902 |

[9] |
Bebernes, J.; Lacey, A.: Finite-time blowup for a particular parabolic system. SIAM J. Math. anal. 21, 1415 (1990) · Zbl 0721.35009 |

[10] |
Bebernes, J.; Bricher, S.: Final time blowup profiles for semilinear parabolic equations via center manifold theory. SIAM J. Math. anal. 23, 852 (1992) · Zbl 0754.35055 |

[11] |
Berger, M.; Kohn, R. V.: A rescaling algorithm for the numerical calculation of blowing-up solutions. Comm. pure and appl. Math. 41, 841 (1988) · Zbl 0652.65070 |

[12] |
Huang, W.; Ren, Y.; Russell, R.: Moving mesh methods based on moving mesh partial differential equations. J. comput. Phys. 113, 279 (1994) · Zbl 0807.65101 |

[13] |
K. Yosida, 1980, Functional Analysis, Springer-Verlag, New York/Berlin · Zbl 0435.46002 |

[14] |
Constantin, P.; Lax, P. D.; Majda, A.: A simple one-dimensional model for the three-dimensional vorticity equation. Commun. pure appl. Math. 38, 715 (1985) · Zbl 0615.76029 |

[15] |
Kruskal, M. D.; Zubusky, N. J.: Commun. pure appl. Math.. 38, 715 (1965) |

[16] |
Mallat, S.: Multiresolution approximations and wavelet orthogonal bases of L2. Trans. amer. Math. soc. 315, 69-88 (1989) · Zbl 0686.42018 |

[17] |
Daubechies, I.: Orthonormal bases of compactly supported wavelets. Commun. pure appl. Math. 41, 909 (1988) · Zbl 0644.42026 |

[18] |
Daubechies, I.: Ten lectures on wavelets. CBMS-NSF series in applied mathematics (1992) · Zbl 0776.42018 |

[19] |
B. Alpert, 1990, Sparse Representation of Smooth Linear Operators, Yale University |

[20] |
Alpert, B.: A class of bases inl2. SIAM J. Math. anal. 24, 246 (1993) · Zbl 0764.42017 |

[21] |
Beylkin, G.: On the representation of operators in bases of compactly supported wavelets. SIAM J. Numer. anal. 6, 1716 (1992) · Zbl 0766.65007 |

[22] |
Beylkin, G.: Wavelets and fast numerical algorithms. Proc. sympos. Appl. math. 47 (1993) · Zbl 0793.65105 |

[23] |
G. Beylkin, 1991, Wavelets, multiresolution analysis and fast numerical algorithms, A draft of INRIA Lecture Notes |

[24] |
Alpert, B.; Beylkin, G.; Coifman, R. R.; Rokhlin, V.: Wavelet-like bases for the fast solution of second-kind integral equations. SIAM J. Sci. comput. 14, 159 (1993) · Zbl 0771.65088 |

[25] |
Beylkin, G.; Coifman, R. R.; Rokhlin, V.: Fast wavelet transforms and numerical algorithms I. Commun. pure appl. Math. 44, 141 (1991) · Zbl 0722.65022 |

[26] |
August 1989 |

[27] |
G. Beylkin, R. R. Coifman, V. Rokhlin, 1992, Wavelets in numerical analysis, Wavelets and Their Applications, 181, Jones & Bartlett, Boston · Zbl 0798.65126 |

[28] |
Bony, J. M.: Calcul symbolique et propagation des singularités pour LES équations aux dérivées partielles non-linéaires. Ann. sci. Ecole norm. Sup. 14, 209 (1981) |

[29] |
Coifman, R. R.; Meyer, Y.: Au delà des opérateurs pseudo-différentiels. 2nd éd. Revue et augmentée 57 (1978) |

[30] |
I. Daubechies, J. Lagarius, Two-scale difference equations. I. Global regularity of solutions |

[31] |
. SIAM J. Math. anal. 23, 1031 (1992) |

[32] |
C. K. Chui, 1992, An Introduction to Wavelets, Academic Press, San Diego · Zbl 0925.42016 |

[33] |
Y. Meyer, 1992, Wavelets and Operators, Cambridge Stud. Adv. Math. 37, Cambridge Univ. Press, Cambridge |

[34] |
Y. Meyer, Le Calcul Scientifique, les Ondelettes et les Filtres Miroirs en Quadrature |

[35] |
M. V. Wickerhauser, 1994, Adapted Wavelet Analysis from Theory to Software, Peters, Wellesley, MA · Zbl 0818.42011 |

[36] |
Fornberg, B.: On a Fourier method for the integration of hyperbolic equations. SIAM J. Numer. anal. 12, 509 (1975) · Zbl 0349.35003 |

[37] |
Fornberg, B.; Whitham, G. B.: A numerical and theoretical study of certain nonlinear wave phenomena. Phil. trans. R. soc. London 289, 373 (1978) · Zbl 0384.65049 |

[38] |
Schult, R. L.; Wyld, H. W.: Using wavelets to solve the Burgers equation: A comparative study. Phys. rev. A 46, 12 (1992) |

[39] |
J. Liandrat, V. Perrier, Ph. Tchamitchian, 1992, Numerical Resolution of Nonlinear Partial Differential Equations using the Wavelet Approach. Wavelets and Their Applications, M. B. RuskaiG. BeylkinR. CoifmanI. DaubechiesS. MallatY. MeyerL. Raphael, Jones & Bartlett, Boston · Zbl 0802.65100 |

[40] |
L. Gagnon, J. M. Lina, Wavelets and numerical split-step method: A global adaptive scheme, Opt. Soc. Am. B · Zbl 0846.65050 |

[41] |
P. L. Sachdev, 1987, Nonlinear Diffusive Waves, Cambridge Univ. Press, Cambridge · Zbl 0624.35002 |

[42] |
G. Beylkin, 1993, On the fast algorithm for multiplication of functions in the wavelet bases, Progress in wavelet analysis and applications, Proceedings, International Conference ”Wavelets and Applications,” Toulouse, 1992, Y. MeyerS. Roques, Editions Frontieres, gif-sur-Yvette · Zbl 0926.42024 |

[43] |
B. Engquist, S. Osher, S. Zhong, 1991, Fast wavelet based algorithms for linear evolution equations · Zbl 0851.65060 |

[44] |
Basdevant, C.; Deville, M.; Haldenwang, P.; Lacroix, J. M.; Ouzzani, J.; Peyret, R.; Orlandi, P.; Patera, A. T.: Spectral and finite difference solutions of the Burgers equation. Comput. & fluids 14, 23 (1986) · Zbl 0612.76031 |

[45] |
G. Beylkin, J. M. Keiser, L. Vozovoi, 1996, A new class of stable time discretization schemes for the solution of nonlinear PDE’s · Zbl 0924.65089 |