A multiscale finite element method for elliptic problems in composite materials and porous media. (English) Zbl 0880.73065

We study a multiscale finite element method for solving a class of elliptic problems arising from composite materials and flows in porous media, which contain many spatial scales. The method is designed to efficiently capture the large scale behavior of the solution without resolving all the small scale features. This is accomplished by constructing the multiscale finite element base functions that are adaptive to the local property of the differential operator. Our method is applicable to general multiple-scale problems without restrictive assumptions.


74S05 Finite element methods applied to problems in solid mechanics
74E30 Composite and mixture properties
74E05 Inhomogeneity in solid mechanics
76S05 Flows in porous media; filtration; seepage
Full Text: DOI Link


[1] Ababou, R.; McLaughlin, D.; Gelhar, L. W., Numerical simulation of three-dimensional saturated flow in randomly heterogeneous porous media, Transport in Porous Media, 4, 549 (1989)
[2] Avellaneda, M.; Hou, T. Y.; Papanicolaou, G., Finite difference approximations for partial differential equations with rapidly oscillating coefficients, Math. Modelling Numer. Anal., 25, 693 (1991) · Zbl 0755.65088
[3] Avellaneda, M.; Lin, F-H., Homogenization of elliptic problems with \(L^p\) boundary data, Appl. Math. Optim., 15, 93 (1987) · Zbl 0644.35034
[4] Babuška, I.; Caloz, G.; Osborn, E., Special finite element methods for a class of second order elliptic problems with rough coefficients, SIAM J. Numer. Anal., 31, 945 (1994) · Zbl 0807.65114
[5] Babuška, I.; Osborn, E., Generalized finite element methods: Their performance and their relation to mixed methods, SIAM J. Numer. Anal., 20, 510 (1983) · Zbl 0528.65046
[6] Babuška, I.; Szymczak, W. G., An error analysis for the finite element method applied to convection-diffusion problems, Comput. Methods Appl. Math. Engrg., 31, 19 (1982) · Zbl 0507.76087
[7] Bear, J., Use of models in decision making, Transport and Reactive Processes in Aquifers (1994), Balkema: Balkema Rotterdam, p. 3-
[8] Bensoussan, A.; Lion, J. L.; Papanicolaou, G., Asymptotic Analysis for Periodic Structure. Asymptotic Analysis for Periodic Structure, Studies in Mathematics and Its Applications, 5 (1978), North-Holland: North-Holland Amsterdam
[9] Burr, D. T.; Sudicky, E. A.; Naff, R. L., Nonreactive and reactive solute transport in 3-dimensional heterogeneous porous media—mean displacement, plume spreading, and uncertainty, Water Resour. Res., 30, 791 (1994)
[10] Cruz, M. E.; Petera, A., A parallel Monte-Carlo finite-element procedure for the analysis of multicomponent random media, Int. J. Numer. Methods Eng., 38, 1087 (1995) · Zbl 0823.73063
[11] Dendy, J. E., Black box multigrid, J. Comput. Phys., 48, 366 (1982) · Zbl 0495.65047
[12] Durlofsky, L. J., Numerical-calculation of equivalent grid block permeability tensors for heterogeneous porous media, Water Resour. Res., 27, 699 (1991)
[13] Durlofsky, L. J., Representation of grid block permeability in coarse scale models of randomly heterogeneous porous-media, Water Resour. Res., 28, 1791 (1992)
[14] Dykaar, B. B.; Kitanidis, P. K., Determination of the effective hydraulic conductivity for heterogeneous porous media using a numerical spectral approach: 1. method, Water Resour. Res., 28, 1155 (1992)
[15] E, W.; Hou, T. Y., Homogenization and convergence of the vortex method for 2-d euler equations with oscillatory vorticity fields, Comm. Pure and Appl. Math., 43, 821 (1990) · Zbl 0701.76028
[17] Engquist, B.; Hou, T. Y., Particle method approximation of oscillatory solutions to hyperbolic differential equations, SIAM J. Numer. Anal., 26, 289 (1989) · Zbl 0675.65093
[19] Frehse, J.; Rannacher, R., Eine \(l^1\), (Frehse, J., der Methode der finiten Elemente. der Methode der finiten Elemente, Finite Elemente, No. 89 (1975), Bonn. Math. Schrift: Bonn. Math. Schrift Bonn), 92
[20] Holian, B. L.; Percus, O. E.; Warnock, T. T.; Whitlock, P. A., Pseudorandom number generator for massively-parallel molecular-dynamics simulations, Phys. Rev. E, 50, 1607 (1994)
[22] Jussel, P.; Stauffer, F.; Dracos, T., Transport modeling in heterogeneous aquifers. 2. 3-dimensional transport model and stochastic numerical tracer experiments, Water Resour. Res., 30, 1819 (1994)
[23] McCarthy, J. F., Comparison of fast algorithms for estimating large-scale permeabilities of heterogeneous media, Transport in Porous Media, 19, 123 (1995)
[24] Scott, R., Optimal \(l^∞\), Math. Comput., 30, 681 (1976) · Zbl 0349.65060
[25] Tompson, A. F.B., Numerical-simulation of chemical migration in physically and chemically heterogeneous porous-media, Water Resour. Res., 29, 3709 (1993)
[26] Turcote, D. L.; Huang, J., Fractal distributions in geology, scale invariance, and deterministic chaos, (Barton, C. C.; La Pointe, P. R., Fractals in the Earth Sciences (1995), Plenum Press), 1-40
[27] De Zeeuw, P. M., Matrix-dependent prolongation and restrictions in a blackbox multigrid solver, J. Comput. Applied Math., 33, 1 (1990) · Zbl 0717.65099
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.