Wambst, Marc Hochschild and cyclic homology of the quantum multiparametric torus. (English) Zbl 0881.18014 J. Pure Appl. Algebra 114, No. 3, 321-329 (1997). From the author’s abstract: “We explicitly compute the Hochschild homology groups of the quantum multiparametric torus, using previously constructed quantum Koszul complexes. We deduce the corresponding cyclic homology groups”. Reviewer: R.Fröberg (Stockholm) Cited in 8 Documents MSC: 18G60 Other (co)homology theories (MSC2010) 13D25 Complexes (MSC2000) 17B37 Quantum groups (quantized enveloping algebras) and related deformations 18G50 Nonabelian homological algebra (category-theoretic aspects) Keywords:quantum torus; Hochschild homology; quantum Koszul complexes; cyclic homology PDF BibTeX XML Cite \textit{M. Wambst}, J. Pure Appl. Algebra 114, No. 3, 321--329 (1997; Zbl 0881.18014) Full Text: DOI References: [1] Berman, S.; Gao, Y.; Krylyuk, Y., Quantum tori and the structure of elliptic quasi-simple Lie algebras, J. funct. anal., 135, 339-389, (1996) · Zbl 0847.17009 [2] Bourbaki, N., Eléments de mathématique, algèbre, chapitre X: algèbre homologique, (1980), Masson Paris · Zbl 0455.18010 [3] Brylinski, J.-L., Central localization in Hochschild homology, J. pure appl. algebra, 57, 1-4, (1989) · Zbl 0669.55001 [4] Goodwillie, T.G., Cyclic homology, derivation and the free loopspace, Topology, 24, 187-215, (1985) · Zbl 0569.16021 [5] Loday, J.-L., Cyclic homology, (1992), Springer Berlin · Zbl 0780.18009 [6] Reiffel, M.A., Non-commutative tori — a case study of non-commutative differentiable manifolds, Contemp. math., 105, 191-211, (1990) [7] Takhtadjian, L.A.; Takhtadjian, L.A., Non-commutative homology of quantum tori, Funkt. anal. pril., Funct. anal. appl., 23, 2, 147-149, (1989), English translation [8] Vigué-Poirrier, M., Cyclic homology of algebraic hypersurfaces, J. pure appl. algebra, 72, 95-108, (1991) · Zbl 0732.16008 [9] Wambst, M., Complexes de Koszul quantiques, Ann. inst. Fourier, Grenoble, 43, 1089-1156, (1993) · Zbl 0810.16010 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.