zbMATH — the first resource for mathematics

Extension and restriction of holomorphic functions. (English) Zbl 0881.32005
Summary: Strong pathologies with respect to growth properties can occur for the extension of holomorphic functions from submanifolds \(D'\) of pseudoconvex domains \(D\) to all of \(D\) even in quite simple situations; the spaces \(A^{p}(D'):={\mathcal O}(D')\cap L^{p}(D')\) are, in general, not at all preserved. Also the image of the Hilbert space \(A^{2}(D)\) under the restriction to \(D'\) can have a very strange structure.

32D15 Continuation of analytic objects in several complex variables
32T99 Pseudoconvex domains
32A25 Integral representations; canonical kernels (Szegő, Bergman, etc.)
32A10 Holomorphic functions of several complex variables
32A35 \(H^p\)-spaces, Nevanlinna spaces of functions in several complex variables
Full Text: DOI Numdam EuDML
[1] E. AMAR, Extension de fonctions holomorphes et courants, Bull. Sc. Math., 107 (1983), 25-48. · Zbl 0543.32007
[2] E. AMAR, Extension de fonctions holomorphes et intégrales singulières, C.R. Acad. Sc. Paris, 299 (1984), 371-374. · Zbl 0587.32023
[3] B. BERNDTSSON, M. ANDERSSON, Henkin-ramirez formulas with weight factors, Ann. Inst. Fourier, 32-3 (1982), 91-110. · Zbl 0466.32001
[4] A. CUMENGE, Extension dans LES classes de Hardy de fonctions holomorphes, Ph.D. thesis, Université Paul Sabatier Toulouse, 1980. · Zbl 0431.32003
[5] J.-P. DEMAILLY, Regularization of closed positive currents and intersection theory, J. Alg. Geom., 1 (1992), 361-409. · Zbl 0777.32016
[6] J.-P. DEMAILLY, Monge-Ampère operators, Lelong numbers and intersection theory, Complex Analysis and Geometry (Ancona, V., Silva, A., eds.), Plenum Press, 1993, pp. 115-193. · Zbl 0792.32006
[7] J.-P. DEMAILLY, Effective bounds for very ample line bundles, Invent. Math., 124 (1996), 243-261. · Zbl 0862.14004
[8] K. DIEDERICH, J.-E. FORNæSS, Pseudoconvex domains with real analytic boundary, Ann. Math., 107 (1978), 371-384. · Zbl 0378.32014
[9] K. DIEDERICH, G. HERBORT, Extension of holomorphic L2-functions with weighted growth conditions, Nagoya Math. J., 126 (1992), 141-157. · Zbl 0759.32002
[10] K. DIEDERICH, G. HERBORT, Geometric and analytic boundary invariants on pseudoconvex domains. Comparison results, J. Geom. Analysis, 3 (1993), 237-267. · Zbl 0786.32016
[11] K. Diederich, G. Herbort, G., Pseudoconvex domains of semiregular type, Contributions to Complex Analysis (Trépreau, H., Skoda, J. M., eds.), Aspects of Mathematics, vol. E 26, Vieweg-Verlag, 1994, pp. 127-162. · Zbl 0845.32019
[12] K. DIEDERICH, G. HERBORT, T. OHSAWA, The Bergman kernel on uniformly extendable pseudoconvex domains, Math. Ann., 273 (1986), 471-478. · Zbl 0582.32028
[13] G.-M. HENKIN, Continuation of bounded holomorphic functions from submanifolds in general position to strictly pseudoconvex domains, Math. USSR Izvestija, 6 (1972), 536-563. · Zbl 0255.32008
[14] G.-M. HENKIN, J. LEITERER, Theory of functions on complex manifolds, Monographs in Mathematics, vol. 79, Birkhäuser Verlag, Basel, 1984. · Zbl 0726.32001
[15] E. MAZZILLI, Division et extension des fonctions holomorphes dans LES ellipsoides, Ph.D. thesis, Universit Paul Sabatier de Toulouse, 1995. · Zbl 0846.32015
[16] E. MAZZILLI, Extension des fonctions holomorphes, C.R. Acad. Sci. Paris, 321 (1995), 837-841. · Zbl 0846.32015
[17] E. MAZZILLI, Extension des fonctions holomorphes dans LES pseudo-ellipsoides, to appear in Math. Z., 1996.
[18] T. OHSAWA, On the extension of L2-holomorphic functions II, Publ. RIMS Kyoto Univ., 24 (1988), 265-275. · Zbl 0653.32012
[19] T. OHSAWA, On the extension of L2-holomorphic functions III: negligible weights, Math. Z., 219 (1995), 215-226. · Zbl 0823.32006
[20] T. OHSAWA, K. TAKEGOSHI, On the extension of L2-holomorphic functions, Math. Z., 195 (1987), 197-204. · Zbl 0625.32011
[21] Y. T. SIU, The Fujita conjecture and the extension theorem of ohsawa-takegoshi, Preprint, 1995. · Zbl 0941.32021
[22] H. SKODA, Applications de techniques L2 à la théorie des idéaux d’une algèbre de fonctions holomorphes avec poids, Ann. Sci. Ec. Norm. Sup. Paris, 5 (1972), 545-579. · Zbl 0254.32017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.