×

Nontrivial periodic solutions for strong resonance Hamiltonian systems. (English) Zbl 0881.34061

A nonautonomous Hamiltonian system of the form \[ -J{dx\over dt}= H_x(t,x), \] where \(H\in C^2([0,1]\times \mathbb{R}^{2n},\mathbb{R})\) is 1-periodic in \(t\) and \[ J=\begin{pmatrix} 0 & -I_n\\ I_n & 0\end{pmatrix} \] is considered. Under the assumption that the Hamiltonian has an asymptotically linear gradient and the linearized operators have distinct Maslov indices at \(0\) and at infinity it is proved the existence of nontrivial periodic solutions.

MSC:

34C25 Periodic solutions to ordinary differential equations
37J99 Dynamical aspects of finite-dimensional Hamiltonian and Lagrangian systems
70H05 Hamilton’s equations
70K30 Nonlinear resonances for nonlinear problems in mechanics
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML

References:

[1] Amann, H.; Zehnder, E., Nontrivial Solutions for a class of nonresonance problems and applications to nonlinear differential equations, Ann. Sc. Super. Pisa, CC. Sci., 539-603 (1980), IV, Ser. 7 · Zbl 0452.47077
[2] Amann, H.; Zehnder, E., Periodic solutions of asymptotically Hamiltonian systems, Manuscr. Math., Vol. 32, 149-189 (1980) · Zbl 0443.70019
[3] Chang, K. C., Solutions of asymptotically linear operator equations via Morse theory, Comm. Pure Appl. Math., Vol. 34, 693-712 (1981) · Zbl 0444.58008
[4] Chang, K. C., Applications of homology theory to some problems in differential equations, (Browder, F. E., Nonlinear Func. Anal.. Nonlinear Func. Anal., Proc. Symp. Pure Math. (1986), AMS), 253-261
[5] Chang, K. C., (Miranda, M., On the homology method in the critical point theory, PDE and related subjects, Vol. 269 (1992), Pitman), 59-77
[6] Chang, K. C.; Liu, J. Q., A strong resonance problem, Chinese Ann. of Math., Vol. 11B, 191-210 (1990) · Zbl 0719.58012
[7] Conley, C.; Zehnder, E., Morse type index theory for flows and periodic solutions for Hamiltonian equations, Comm. Pure Appl. Math., Vol. 37, 207-253 (1984) · Zbl 0559.58019
[8] Ding, Y. H.; Liu, J. Q., Periodic solutions of asymptotically linear Hamiltonian systems, J. Sys. Sci. Math. Sci., Vol. 9, 30-39 (1990)
[9] Li, S. J.; Liu, J. Q., Morse theory and asymptotically linear Hamiltonian systems, JDE, 78, 53-73 (1989) · Zbl 0672.34037
[10] Liu, M. J., Morse theory for strong indefinite functional and applications, (Thesis (1990), Institute of System Science: Institute of System Science Beijing)
[11] Long, Y. M., Maslov index, degenerate critical points and asymptotically linear Hamiltonian systems, Science in China, Ser. A, Vol. 33, 1409-1419 (1990) · Zbl 0736.58022
[12] Long, Y. M.; Zehnder, E., Morse theory for forced oscillations of asymptotically linear Hamiltonian systems, Stochastic Processes, Physics and Geometry, World Sci. Press, 528-563 (1990)
[13] Marino, A.; Prodi, G., Metodi perturbativi nella teoria di Morse, ((1975), Boll. Un. Mate: Boll. Un. Mate Italia), 1-32, Suppl. Fasc. 3 · Zbl 0311.58006
[14] Salvatore, A., Periodic solutions of asymptotically linear systems without symmetry, Rend. Sem. Mat. Univ., Padova, Vol. 74, 147-161 (1985) · Zbl 0592.34030
[15] Szulkin, A., Cohomology and Morse theory for strong indefinite functionals, MZ 209, ((1992)), 375-418 · Zbl 0735.58012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.