A priori estimates in hyperbolic systems of conservation laws via generalized characteristics. (English) Zbl 0881.35018

Author’s abstract: Using the theory of generalized characteristics, we establish a priori estimates on the variation of countably regular BV solutions to strictly hyperbolic, genuinely nonlinear systems of two conservation laws without appealing to any particular approximating scheme. The derived estimates are similar to those obtained by Glimm and Lax for solutions constructed by the random choice method.


35B45 A priori estimates in context of PDEs
35L65 Hyperbolic conservation laws
Full Text: DOI


[1] DOI: 10.1007/BF00286497 · Zbl 0714.35046
[2] Dafermos C. M., Proc. Royal Soc. of Edinb. 116 pp 245– (1990)
[3] Dafermos C. M., Ann. Inst.Henri Poincare’- Analyse non 8 pp 231– (1991)
[4] DOI: 10.1512/iumj.1977.26.26088 · Zbl 0377.35051
[5] Dafermos C. M., A study of the structure and asymptotic behavior of solutions 1 (1977) · Zbl 0373.35048
[6] Dafermos C. M., Journal of Diff. Equations 121 (1995)
[7] DOI: 10.1007/BF00281470 · Zbl 0324.35062
[8] Fillipov A. F., English translation Amer. Math. Soc. Transl. 51 pp 99– (1960)
[9] DOI: 10.1002/cpa.3160180408 · Zbl 0141.28902
[10] Glimm J., Mem. Amer. Math. Soc. 101 (1970)
[11] DOI: 10.1002/cpa.3160100406 · Zbl 0081.08803
[12] Lax P. D., Conti-ibutions to Functional Analysis pp 603– (1971)
[13] Oleinik 0. A., Uspehz Mat. Nauk. 12 pp 3– (1957)
[14] DOI: 10.1090/S0002-9947-1983-0716850-2
[15] Volpert A. I., English transl. Math. USSR Sbornik 73 pp 255– (1967)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.