Bennequin, Daniel Seiberg-Witten monopoles and Thom’s conjecture (after Kronheimer, Mrowka and Witten). (Monopôles de Seiberg-Witten et conjecture de Thom (d’après Kronheimer, Mrowka et Witten).) (French) Zbl 0881.57035 Séminaire Bourbaki. Volume 1995/96. Exposés 805–819. Paris: Société Mathématique de France, Astérisque. 241, 59-96, Exp. No. 807 (1997). In this large survey the following subjects are treated : the structure \(Spin^c\), the Clifford algebra, the Dirac equations, the Seiberg-Witten equations, the Thom conjecture. The last section contains a discussion of the implications to modern physics of the presented results.For the entire collection see [Zbl 0866.00026]. Reviewer: M.Anastasiei (Iaşi) Cited in 1 Document MSC: 57R57 Applications of global analysis to structures on manifolds 58J90 Applications of PDEs on manifolds 57M25 Knots and links in the \(3\)-sphere (MSC2010) 57M50 General geometric structures on low-dimensional manifolds 57R15 Specialized structures on manifolds (spin manifolds, framed manifolds, etc.) 14H99 Curves in algebraic geometry 81T13 Yang-Mills and other gauge theories in quantum field theory 81T60 Supersymmetric field theories in quantum mechanics Keywords:spin structures; Clifford algebra; Seiberg-Witten equations PDFBibTeX XMLCite \textit{D. Bennequin}, in: Séminaire Bourbaki. Volume 1995/96. Exposés 805--819. Paris: Société Mathé\-matique de France. 59--96, Exp. No. 807 (1997; Zbl 0881.57035) Full Text: Numdam EuDML