Fomin, Sergey; Kirillov, Anatol N. Reduced words and plane partitions. (English) Zbl 0882.05010 J. Algebr. Comb. 6, No. 4, 311-319 (1997). Summary: Let \(w_0\) be the element of maximal length in the symmetric group \(S_n\), and let \(\text{Red}(w_0)\) be the set of all reduced words for \(w_0\). We prove the identity \[ \sum_{(a_1,a_2,\dots)\in\text{Red}(w_0)}(x+ a_1)(x+ a_2)\cdots= {n\choose 2}! \prod_{1\leq i<j\leq n} {2x+ i+ j-1\over i+j-1},\tag{\(*\)} \] which generalizes Stanley’s formula for the cardinality of \(\text{Red}(w_0)\), and Macdonald’s formula \(\sum a_1a_2\cdots= \left(\begin{smallmatrix} n\\ 2\end{smallmatrix}\right)!\). Our approach uses an observation, based on a result by M. L. Wachs [J. Comb. Theory, Ser. A 40, 276-289 (1985; Zbl 0579.05001)], that evaluation of certain specializations of Schubert polynomials is essentially equivalent to enumeration of plane partitions whose parts are bounded from above. Thus, enumerative results for reduced words can be obtained from the corresponding statements about plane partitions, and vice versa. In particular, identity \((*)\) follows from Proctor’s formula for the number of plane partitions of a staircase shape, with bounded largest part. Similar results are obtained for other permutations and shapes; \(q\)-analogues are also given. Cited in 2 ReviewsCited in 19 Documents MSC: 05A17 Combinatorial aspects of partitions of integers 05A15 Exact enumeration problems, generating functions 05E05 Symmetric functions and generalizations 05E15 Combinatorial aspects of groups and algebras (MSC2010) 14M15 Grassmannians, Schubert varieties, flag manifolds 20C30 Representations of finite symmetric groups 05E10 Combinatorial aspects of representation theory Keywords:Young tableaux; Ferrers shape; reduced words; identity; Stanley’s formula; Macdonald’s formula; Schubert polynomials; enumeration of plane partitions; permutations; shapes; \(q\)-analogues Citations:Zbl 0579.05001 PDFBibTeX XMLCite \textit{S. Fomin} and \textit{A. N. Kirillov}, J. Algebr. Comb. 6, No. 4, 311--319 (1997; Zbl 0882.05010) Full Text: DOI References: [1] S.C. Billey, W. Jockusch, and R.P. Stanley, “Some combinatorial properties of Schubert polynomials,” J. Alg. Combin.2(1993), 345-374. · Zbl 0790.05093 [2] P. Edelman and C. Greene, “Balanced tableaux,” Advances in Math.63(1987), 42-99. · Zbl 0616.05005 [3] S. Fomin and R.P. Stanley, “Schubert polynomials and the nilCoxeter algebra,” Advances in Math.103(1994), 196-207. · Zbl 0809.05091 [4] S. Fomin and A.N. Kirillov, “The Yang-Baxter equation, symmetric functions, and Schubert polynomials,” Discrete Math.153(1996), 123-143. · Zbl 0852.05078 [5] S. Fomin, C. Greene, V. Reiner, and M. Shimozono, “Balanced labellings and Schubert polynomials,” European J. Combin.8(1997), 373-389. · Zbl 0871.05059 [6] I.M. Gessel and G.X. Viennot, “Determinants, paths, and plane partitions,” (preprint). · Zbl 0579.05004 [7] R.C. King, “Weight multiplicities for the classical groups,” Springer Lecture Notes in Physics 50(1976). · Zbl 0369.22018 [8] K. Koike and I. Terada, “Young-diagrammatic methods for the representation theory of the classical groups of type <Emphasis Type=”Italic“>B <Emphasis Type=”Italic“>n, <Emphasis Type=”Italic“>C <Emphasis Type=”Italic“>n, <Emphasis Type=”Italic“>D <Emphasis Type=”Italic“>n,” J. Algebra107(1987), 466-511. · Zbl 0622.20033 [9] W. KraÜkiewicz and P. Pragacz, “Schubert functors and Schubert polynomials,” 1986 (preprint). · Zbl 1062.14065 [10] A. Lascoux, “Polynômes de Schubert. Une approche historique,” Séries formelles et combinatoire algébrique, P. Leroux and C. Reutenauer (Eds.), Université du Québec à Montréal, LACIM, pp. 283-296, 1992. [11] I.G. Macdonald, Notes on Schubert polynomials, Laboratoire de combinatoire et d’informatique mathématique (LACIM), Université du Québec à Montréal, Montéral, 1991. [12] I.G. Macdonald, Symmetric Functions and Hall Polynomials, 2nd edition, Oxford Univ. Press, Oxford, 1995. · Zbl 0899.05068 [13] P.A. MacMahon, Combinatory Analysis, Vols. 1-2, Cambridge University Press, 1915, 1916; reprinted by Chelsea, New York, 1960. · JFM 45.1271.01 [14] R.A. Proctor, unpublished research announcement, 1984. [15] R.A. Proctor, “Odd symplectic groups,” Invent. Math.92(1988), 307-332. · Zbl 0621.22009 [16] R.A. Proctor, “New symmetric plane partition identities from invariant theory work of De Concini and Procesi,” European J. Combin.11(1990), 289-300. · Zbl 0726.05008 [17] V. Reiner and M. Shimozono, “Key polynomials and a flagged Littlewood-Richardson rule,” J. Combin. Theory, Ser. A70(1995), 107-143. · Zbl 0819.05058 [18] J.-P. Serre, Algebres de Lie Semi-Simples Complexes, W.A. Benjamin, New York, 1966. · Zbl 0144.02105 [19] R.P. Stanley, “Theory and applications of plane partitions,” Studies in Appl. Math.50(1971), 167-188, 259-279. · Zbl 0225.05011 [20] R.P. Stanley, “On the number of reduced decompositions of elements of Coxeter groups,” European J. Combin.5(1984), 359-372. · Zbl 0587.20002 [21] M.L. Wachs, “Flagged Schur functions, Schubert polynomials, and symmetrizing operators,” J. Combin. Theory, Ser. A40(1985), 276-289. · Zbl 0579.05001 [22] D.P. Zhelobenko, “The classical groups. Spectral analysis of their finite dimensional representations,” Russ. Math. Surv.17(1962), 1-94. · Zbl 0142.26703 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.