zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A sufficient condition for all short cycles. (English) Zbl 0882.05081
Summary: Generalizing a result of {\it R. Häggkvist}, {\it R. J. Faudree} and {\it R. H. Schelp} [Ars Comb. 11, 37-49 (1981; Zbl 0485.05038)], we prove that every non-bipartite graph of order $n$ with more than $(n-1)^2/4+ 1$ edges contains cycles of every length between 3 and the length of a longest cycle.

05C38Paths; cycles
Full Text: DOI Link
[1] Bondy, J. A.: Pancyclic graphs. J. combin. Theory ser. B 11, 80-84 (1971) · Zbl 0183.52301
[2] Bondy, J. A.: Large cycles in graphs. Discrete math. 1, 121-132 (1971) · Zbl 0224.05120
[3] S. Brandt, R.J. Faudree, W. Goddard, Weakly pancyclic graphs, submitted.
[4] Dirac, G. A.: Some theorems on abstract graphs. Proc. London math. Soc. 3, 69-81 (1952) · Zbl 0047.17001
[5] Häggkvist, R.; Faudree, R. J.; Schelp, R. H.: Pancyclic graphs--connected Ramsey number. Ars combin. 11, 37-49 (1981) · Zbl 0485.05038
[6] Moon, J. W.; Moser, L.: On Hamiltonian bipartite graphs. Isr. J. Math. 1, 163-165 (1963) · Zbl 0119.38806