×

Singularités de séries de Dirichlet associées à des polynômes de plusieurs variables et applications en théorie analytique des nombres. (Singularities of Dirichlet series associated to polynomials of several variables and applications to analytic number theory). (French) Zbl 0882.11051

Summary: The author considers the Dirichlet series \(s\mapsto Z(P;s) =\sum\limits_{m\in{\mathbb N}^{*n}}P(m)^{-s} (s\in{\mathbb C})\) where \(P\in{\mathbb R}[X_1,...,X_n]\). Say that \(Z(P;s)\) exists if this multiple series is absolutely convergent. In this paper he studies meromorphic continuations of such series, under the assumptions that there exists a constant \(B\in]0,1[\) such that: i) \(P(x)\to +\infty\) when \(|x|\to + \infty\) and \(x \in [B,+\infty[^n\) and ii) \(d(Z(P),\;[B,+\infty[^n)>0\) where \(Z(P)=\{ z \in{\mathbb C}^n\mid P(z)=0\}\). This assumption is probably optimal, and in any way strictly includes all classes of polynomials previously treated. Under this assumption, he proves the existence of meromorphic continuations of Dirichlet series and gives a set of candidate poles and an upper bound to the orders of these poles. Moreover the author obtains bounds for these meromorphic continuations on vertical bands. As an application, he shows the existence of a finite asymptotic expansion of the counting function: \[ N_P(t)=\#\{ m \in {\mathbb N}^{*n}\mid P(m)\leq t \} \text{ when } t\to + \infty. \]

MSC:

11M41 Other Dirichlet series and zeta functions
11P21 Lattice points in specified regions
14P10 Semialgebraic sets and related spaces
32A20 Meromorphic functions of several complex variables
32A25 Integral representations; canonical kernels (Szegő, Bergman, etc.)
14B05 Singularities in algebraic geometry
PDFBibTeX XMLCite
Full Text: DOI Numdam EuDML

References:

[1] M.F. ATIYAH, Resolutions of singularities and division of distributions, Com. Pure and Applied Mathematics, XXIII (1970), 145-150.0188.1940541 #815 · Zbl 0188.19405
[2] P. CASSOU-NOGUÈS, Applications arithmétiques de l’étude des valeurs aux entiers négatifs des séries de Dirichlet associées à un polynôme, Ann. Inst. Fourier, 31-4 (1981), 1-36.0496.1200983e:12011AIF_1981__31_4_1_0 · Zbl 0496.12009
[3] P. CASSOU-NOGUÈS, Séries de Dirichlet, Journées Arithmétiques de Metz, Astérisque, 94 (1982), 1-15.0515.12011 · Zbl 0515.12011
[4] [4] , Prolongement des séries de Dirichlet associées à un polynôme à deux indéterminées, J. Number Theory, 23 (1986), 1-54. · Zbl 0584.10022
[5] [5] , Ensembles semi-algébriques, géométrie algébrique réelle et formes quadratiques, in “Proceedings, Rennes, 1981”, Lecture Notes in Math., 959, Springer-Verlag, Berlin-Heidelberg-New York, 1982, 109-138. · Zbl 0498.14012
[6] [6] , Resolution of singularities of an algebraic variety over a field of characteristic zero, Annals of Math., 79 (1964), 109-326. · Zbl 0122.38603
[7] [7] , Linear partial differential operators, Springer-Verlag, Berlin-Heidelberg-New York. · Zbl 0108.09301
[8] B. LICHTIN, Generalized Dirichlet series and B-functions, Compositio Math., 65 (1988), 81-120.0637.3200289d:32030CM_1988__65_1_81_0 · Zbl 0637.32002
[9] [9] , Volumes and lattice points. Proof of a conjecture of L. Ehrenpreis, in “Singularities”, London Mathem. Soc., Lecture Notes, 201, Cambridge University Press, Cambridge, 1994. · Zbl 0820.11062
[10] [N] , Algebraische Zahlentheorie, Springer Verlag, 1992. · Zbl 0820.11061
[11] K. MAHLER, Über einer Satz von Mellin, Mathematische Annalen, 100 (1928), 384-395.54.0369.03
[12] R.H. MELLIN, Acta Soc. Scient. Fennicae, 29, 4 (1900).
[13] [13] , Rational approximation to algebraic numbers, Mathematica, 2 (1955), 1-20 (with corrigendium p. 168). · Zbl 0064.28501
[14] [14] , Prolongement méromorphe des séries de Dirichlet associées à des fractions rationnelles de plusieurs variables, Ann. Institut Fourier, 34-3 (1984), 83-123. · Zbl 0523.10026
[15] [AS] and , Betti numbers of congruence groups, Israel J. of Math., 88 (1994
[16] [16] , Croissance de certaines séries de Dirichlet et applications, J. reine angew. Math., 367 (1986), 139-154. · Zbl 0575.10035
[17] [17] , The theory of the riemann zeta function, Oxford University Press, Oxford, 1951. · Zbl 0042.07901
[18] A. YGER, Formules de division et prolongements méromorphes, Séminaire d’analyse (P. Lelong-P. Dolbeault-H. Skoda), Lecture Notes in Math., 1295, Springer-Verlag, Berlin-Heidelberg-New York, 1988.
[19] B.M. VAN DER WÆRDEN, Einführung in die algebraische Geometrie, Berlin Verlag von Julius Springer, 1939.0021.25001 · Zbl 0021.25001
[20] R.J. WALKER, Algebraic curves, Princeton University Press, 1950.0039.3770111,387e · Zbl 0039.37701
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.