zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Generalized fractional calculus and applications. (English) Zbl 0882.26003
Pitman Research Notes in Mathematics Series. 301. Harlow: Longman Scientific & Technical. New York: John Wiley & Sons. x, 388 p. £ 39.00 (1994).
{\it Fractional calculus} deals with the theory of operators of integration and differentiation of arbitrary order and their applications [{\it K. Nishimoto}: “Fractional calculus”, Vol. I (1984; Zbl 0605.26006), Vol. II (1987; Zbl 0702.26011), Vol. III (1989; Zbl 0798.26005), and Vol. IV (1991; Zbl 0798.26006); {\it S. G. Samko}, {\it A. A. Kilbas} and {\it O. I. Marichev}: “Integrals and derivatives of fractional order and some of their applications” (Russian: 1987; Zbl 0617.26004; English translation: 1993; Zbl 0818.26003)]. The concept of differintegral of complex order $\delta$, which is a generalization of the ordinary $n$th derivative and $n$-times integral, can be introduced in several ways. One of the simple definition of an integral of an arbitrary order is based on an integral transform, called the Riemann-Liouville operator of fractional integration: $$R^\delta f(x)= D^{-\delta}f(x)= {1\over\Gamma(\delta)} \int^x_0 (x-t)^{\delta- 1}f(t)dt;\quad\text{Re}(\delta)>0.$$ The so-called Weyl fractional integral is defined as: $$W^\delta f(x)= {1\over\Gamma(\delta)} \int^\infty_x (t-x)^{\delta- 1}f(t)dt,\quad\text{Re}(\delta)>0.$$ There are several modifications and generalizations of these operators, but the most widely used in applications are the Erdélyi-Kober operators. This book is devoted to a systematic and unified development of a new generalized fractional calculus. Generalized operators of integration and differentiation of arbitrary multiorder $\delta$ $(\delta_1\ge 0,\dots,\delta_m\ge 0)$, $m\ge 1$, are introduced by means of kernels being $G^{m,0}_{m,m}$- and $H^{m,0}_{m,m}$-functions. Due to this special choice of Meijer’s G-function (and Fox’s H-function) in the single integral representations of the operators considered here, a decomposition into commuting Erdélyi-Kober fractional operators holds under suitable conditions. The author has developed a full chain of operational rules, mapping properties and convolutional structure of the generalized (m-tuple) fractional integrals and the corresponding derivatives. Historical background and the theme of the book is contained in the Introduction. Chapters 1 and 2 treat the basic concepts and properties of the Erdélyi-Kober fractional integrals. Chapter 3 is devoted to the class of so-called hyper-Bessel integral and differential properties, Poisson-Sonine-Dimovski transmutations and Obrechkoff transform. Some new integral and differintegral formulas for the generalized hypergeometric functions ${_pF_q}$ are considered in Chapter 4. Some other applications of the generalized fractional calculus: Abel’s integral equation, theory of univalent functions and generalized Laplace type transforms are treated in the Chapter 5. Fractional integration operators involving Fox’s $H^{m,0}_{m,m}$-function are studied here in different functional spaces. To make the book self-contained, the author has given an Appendix dealing with definition and main properties of the Meijer’s G-function, Fox’s H-function, Hyper Bessel, D- and n-Bessel functions, etc. The references include 519 titles and a Citation Index is provided, showing the articles referred to in the Sections. This book is an exposition of a self-contained new theory of generalized operators of differintegrals. This monograph is very useful for graduate students, lecturers and researchers in Applied Mathematical Analysis and related Mathematical Sciences. This book is a good addition to the existing literature on the subject, and it will stimulate more research in this new exciting field of fractional calculus.

26A33Fractional derivatives and integrals (real functions)
26-02Research monographs (real functions)
33-02Research monographs (special functions)
34B30Special ODE (Mathieu, Hill, Bessel, etc.)
44A10Laplace transform
30C45Special classes of univalent and multivalent functions
45E10Integral equations of the convolution type