Long, Ruilin; Chen, Wen Wavelet basis packets and wavelet frame packets. (English) Zbl 0882.42022 J. Fourier Anal. Appl. 3, No. 3, 239-256 (1997). The article generalizes the results of Z. Shen [SIAM J. Math. Anal. 26, No. 4, 1061-1074 (1995; Zbl 0826.42025)] on wavelet packets in \({\mathbb{R}}^d\) and succeeds to set up a more natural framework. In particular, the following result is proved: Let \(\varphi \in L^2({\mathbb{R}}^d)\) be an orthogonal scaling function with two-scale symbol \(m_0(\xi)\) and suppose that there exists a \(2\pi {\mathbb{Z}}^d\)-periodic measurable matrix completion \(M(\xi) = (m_{\mu}(\xi+\nu \pi))_{\mu, \nu \in E_d}\) being unitary for \(\xi\) a.e.. Further, let \((n, j) \in {\mathbb{Z}}_+ \times {\mathbb{Z}}_+\) correspond to the dyadic interval \(I_{j,n}=\{ l \in {\mathbb{Z}}_+: 2^{jd}n \leq l < 2^{jd}(n+1)\}\). Then \(\{ 2^{jd/2} w_n(2^jx-k) \}\), \(k \in {\mathbb{Z}}^d\), is an orthonormal basis of \(L^2({\mathbb{R}}^d)\) if and only if \(\{ I_{j,n} \}_{(n,j)}\) is a disjoint covering of \({\mathbb{Z}}_+\). Finally, an “unstability” result of nonorthogonal wavelet packets in A. Cohen and I. Daubechies [SIAM J. Math. Anal. 24, No. 5, 1340-1354 (1993; Zbl 0792.42020)] is generalized to \({\mathbb{R}}^d\). Reviewer: G.Plonka (Rostock) Cited in 12 Documents MSC: 42C40 Nontrigonometric harmonic analysis involving wavelets and other special systems Keywords:wavelets; Riesz bases; frames; wavelet packets; unitary matrices Citations:Zbl 0826.42025; Zbl 0792.42020 × Cite Format Result Cite Review PDF Full Text: DOI EuDML References: [1] deBoor, C., DeVore, R., and Ron, A. (1993). On the construction of multivariate (pre) wavelets.Constr. Approx. 9, 123–166. · Zbl 0773.41013 · doi:10.1007/BF01198001 [2] Chen, D. (1994). On splitting trick and wavelet frame packets, preprint. [3] Chui, C. R., and Li, C. (1993). Non-orthogonal wavelet packets,SIAM J. Math. Anal. 24, 712–738. · Zbl 0770.41022 · doi:10.1137/0524044 [4] Cohen, A., and Danbechies, I. (1993). On the instability of arbitrary biorthogonal wavelet packets.SIAM J. Math. Anal. 24, 1340–1350. · Zbl 0792.42020 · doi:10.1137/0524077 [5] Coifman, R., and Meyer, Y. Orthogonal wave packet bases, preprint. · Zbl 0864.42014 [6] Coifman, R., Meyer, Y., and Wickerhauser, M. V. (1992). Wavelet analysis and signal processing.Wavelets and Their Applications (M. B. Ruskai et al., eds.). Jones and Bartlett, Boston, MA, 153–178. · Zbl 0792.94004 [7] –, Size properties of wavelet packets.Wavelets and Their Applications (M. B. Ruskai et al., eds.). Jones and Bartlett, Boston, MA, 453–470. [8] Daubechies, I. (1992). Ten lectures on wavelets.CBMS Lecture Notes 61. Society for Industrial and Applied Mathematics, Philadelphia, PA. [9] Lawton, W. (1990). Tight frames of compactly supported wavelets.J. Math. 31, 1898–1910. · Zbl 0708.46020 [10] Long, R., and Chen, D. (1995). Biorthogonal wavelet bases on \(\mathbb{R}\) d .Appl. Comp. Harmonic Anal. 2, 230–242. · Zbl 0846.42018 · doi:10.1006/acha.1995.1016 [11] Shen, Z. (1995). Non-tensor product wavelet packets inL 2(\(\mathbb{R}\) s ).SIAM J. Math. Anal. 26, 1061–1074. · Zbl 0826.42025 · doi:10.1137/S0036141093243642 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.