Detecting phase transition for Gibbs measures. (English) Zbl 0882.60047

The author proposes some empirical procedure for detecting phase transitions from a sample of Gibbs-Markov random field. The method is based on large deviation principle.
Reviewer: N.Leonenko (Kyïv)


60G60 Random fields
60F10 Large deviations
62M30 Inference from spatial processes
82B26 Phase transitions (general) in equilibrium statistical mechanics
Full Text: DOI


[1] Comets, F. (1992). On consistency of a class of estimators for exponential families of Markov random fields on the lattice. Ann. Statist. 20 455-468. · Zbl 0787.62100
[2] Comets, F. (1994). Erd os-Rény i laws for Gibbs measures. Comm. Math. Phy s. 152 353-369. · Zbl 0816.60025
[3] Cs org ö, S. (1979). Bahadur efficiency and Erd os-Rény i maxima. Sankhy\?a Ser. A 41 141-144. · Zbl 0471.62043
[4] Dai Pra, P. (1994). Detecting non-ergodicity in continuous-time spin sy stems. J. Statist. Phy s. 76 1247-1265. · Zbl 0839.60101
[5] Deheuvels, P., Devroy e, L. and Ly nch, J. (1986). Exact convergence rate in the limit theorems of Erd os-Rény i and Shepp. Ann. Probab. 14 209-223. · Zbl 0595.60033
[6] Dembo, A. and Zeitouni, O. (1993). Large Deviation Techniques and Applications. Jones and Bartlett, Boston. · Zbl 0793.60030
[7] Dobrushin, R. L., Kotecký, R. and Shlosman, S. B. (1992). Wulff Construction: A Global Shape from a Local Interaction. Amer. Math. Soc., Providence, RI. · Zbl 0917.60103
[8] Erd ös, P. and Rény i, A. (1970). A new strong law of large numbers. J. Analy se Math. 23 103-111.
[9] F öllmer, H. and Orey, S. (1988). Large deviations for the empirical field of a Gibbs measure. Ann. Probab. 16 961-977. · Zbl 0648.60028
[10] Georgii, H.-O. (1988). Gibbs Measures and Phase Transition. De Gruy ter, Berlin. · Zbl 0657.60122
[11] Georgii, H.-O. (1993). Large deviations and maximum entropy principle for interacting random fields. Ann. Probab. 21 1845-1875. · Zbl 0790.60031
[12] Guy on, X. (1992). Champs Aléatoires sur un Réseau. Masson, Paris. (English translation: Random Fields on a Network. Springer, New York). · Zbl 0758.62037
[13] Prum, B. (1986). Processus sur un Réseau et Mesures de Gibbs. Masson, Paris. · Zbl 0645.60102
[14] Seppäläinen, T. (1995). Maximum entropy principles for disordered spins. Probab. Theory Related Fields 101 547-576. · Zbl 0826.60020
[15] Seppäläinen, T. (1996). Private communication.
[16] Torrent, N. (1996). Ph.D. dissertation, Univ. Paris 7. In progress.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.