Invariant measures of critical spatial branching processes in high dimensions. (English) Zbl 0882.60091

Summary: We consider two critical spatial branching processes on \(\mathbb{R}^d\): critical branching Brownian motion, and the critical Dawson-Watanabe process. A basic feature of these processes is that their ergodic behavior is highly dimension dependent. It is known that in low dimensions, \(d\leq 2\), the only invariant measure is \(\delta_0\), the unit point mass on the empty state. In high dimensions, \(d\geq 3\), there is a family \(\{\nu_\theta,\;\theta\in [0,\infty)\}\) of extremal invariant measures; the measures \(\nu_\theta\) are translation invariant and indexed by spatial intensity. We prove here, for \(d\geq 3\), that all invariant measures are convex combinations of these measures.


60K35 Interacting random processes; statistical mechanics type models; percolation theory
60J80 Branching processes (Galton-Watson, birth-and-death, etc.)
Full Text: DOI


[1] AIZENMAN, M. 1980. Translation invariance and instability of phase coexistence in the two-dimensional Ising system. Comm. Math. Phys. 73 83 94.
[2] BRAMSON, M., COX, J. T. and GREVEN, A. 1993. Ergodicity of critical spatial branching processes in low dimensions. Ann. Probab. 21 1946 1957. · Zbl 0788.60119
[3] COX, J. T. 1994. On the ergodic theory of critical branching Markov chains. Stochastic Process. Appl. 50 1 20. · Zbl 0796.60088
[4] DAWSON, A. 1977. The critical measure diffusion process.Wahrsch. Verw. Gebiete 40 125 145. · Zbl 0343.60001
[5] DAWSON, D. A. 1993. Measure-valued Markov processes. Ecole d’ete de Probabilites de \' \' Śaint-Flour, Lecture Notes in Math. 1541 1 260. Springer, New York. · Zbl 0799.60080
[6] DAWSON, D. A. and IVANOFF, B. G. 1978. Branching diffusions and random measures. Advances in Probability: Branching Processes 61 109. · Zbl 0407.60087
[7] DURRETT, R. 1979. An infinite particle system with additive interactions. Adv. in Appl. Probab. 11 355 383. JSTOR: · Zbl 0417.60098
[8] DYNKIN, E. B. 1989. Three classes of infinite dimensional diffusions. J. Funct. Anal. 86 75 110. · Zbl 0683.60040
[9] ETHIER, S. and KURTZ, T. 1986. Markov Processes: Characterization and Convergence. Wiley, New York. · Zbl 0592.60049
[10] FLEISCHMAN, J. 1978. Limiting distributions for branching random fields. Trans. Amer. Math. Soc. 239 353 389. · Zbl 0399.60078
[11] GOROSTIZA, L. G. and WAKOLBINGER, A. 1994. Long time behavior of critical branching particle systems and applications. CRM Proceedings and Lecture Notes 5 119 138. · Zbl 0811.60068
[12] ISCOE, I. 1986. A weighted occupation time for a class of measure-valued branching processes. Probab. Theory Related Fields 71 85 116. · Zbl 0555.60034
[13] KERSTAN, J., MATTHES, K. and MECKE, J. 1978. Infinitely Divisible Point Processes, Wiley, New York. · Zbl 0383.60001
[14] KRENGEL, U. 1985. Ergodic Theorems. de Gruyter, Berlin. · Zbl 0471.28011
[15] LIGGETT, T. M. 1985. Interacting Particle Systems. Springer, New York. · Zbl 0559.60078
[16] NGUYEN, X. X. and ZESSIN, H. 1979. Ergodic theorems for spatial processes.Wahrsch. Verw. Gebeite 48 133 158. · Zbl 0397.60080
[17] PERKINS, E. A. 1988. A space-time property of a class of measure-valued branching diffusions. Trans. Amer. Math. Soc. 305 743 794. JSTOR: · Zbl 0641.60060
[18] PROTTER, M. H. and WEINBERGER, H. F. 1967. Maximum Principles in Differential Equations. Prentice-Hall, Englewood Cliffs, NJ. · Zbl 0153.13602
[19] STROOCK, D. W. and VARADHAN, S. R. S. 1979. Multidimensional Diffusion Processes. Springer, New York. · Zbl 0426.60069
[20] MADISON, WISCONSIN 53706 SYRACUSE, NEW YORK 13244 E-MAIL: bramson@math.wisc.edu E-MAIL: jtcox@gumby.syr.edu
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.