zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A new perspective on priors for generalized linear models. (English) Zbl 0882.62057
Summary: This article deals with specifications of informative prior distributions for generalized linear models. Our emphasis is on specifying distributions for selected points on the regression surface; the prior distribution on regression coefficients is induced from this specification. We believe that it is inherently easier to think about conditional means of observables given the regression variables than it is to think about model-dependent regression coefficients. Previous use of conditional means priors seems to be restricted to logistic regression with one predictor variable and to normal theory regression. We expand on the idea of conditional means priors and extend these to arbitrary generalized linear models. We also consider data augmentation priors where the prior is of the same form as the likelihood. We show that data augmentation priors are special cases of conditional means priors. With current Monte Carlo methodology, such as importance sampling and Gibbs sampling, our priors result in tractable posteriors.

62J12Generalized linear models
62F15Bayesian inference
Full Text: DOI