Efficient trust region method for nonlinear least squares. (English) Zbl 0882.65052

The main purpose of this paper is to show that suitable transformations and decompositions lead to an efficient trust region method that uses one decomposition in each iteration only. Convergence properties of the resulting algorithm are comparable with convergence properties of the trust region method with optimal locally constrained step that uses more than one decomposition at each iteration and, therefore, that needs a longer time for obtaining results. This fact is demonstrated by numerical experiments.


65K05 Numerical mathematical programming methods
90C30 Nonlinear programming


minpack; GQTPAR
Full Text: EuDML Link


[1] M. Al-Baali R. Fletcher: Variational methods for nonlinear least squares. J. Optim. Theory Appl. 36 (1985), 405-421. · Zbl 0578.65064 · doi:10.2307/2582880
[2] J. E. Dennis D. M. Gay R. E. Welsch: An adaptive nonlinear least-squares algorithm. ACM Trans. Math. Software 7 (1981), 348-368. · Zbl 0464.65040 · doi:10.1145/355958.355965
[3] J. E. Dennis H. H. W. Mei: An Unconstrained Optimization Algorithm which Uses Function and Gradient Values. Research Report No. TR-75-246. Dept. of Computer Sci., Cornell University 1975.
[4] R. Fletcher: A Modified Marquardt Subroutine for Nonlinear Least Squares. Research Report No.R-6799, Theoretical Physics Division, A.E.R.E. Harwell 1971.
[5] R. Fletcher C. Xu: Hybrid methods for nonlinear least squares. IMA J. Numer. Anal. 7 (1987), 371-389. · Zbl 0648.65051 · doi:10.1093/imanum/7.3.371
[6] P. E. Gill W. Murray: Newton type methods for unconstrained and linearly constrained optimization. Math. Programming 7 (1974), 311-350. · Zbl 0297.90082 · doi:10.1007/BF01585529
[7] M. D. Hebden: An Algorithm for Minimization Using Exact Second Derivatives. Research Report No.TP515, Theoretical Physics Division, A.E.R.E. Harwell 1973.
[8] K. Levenberg: A method for the solution of certain nonlinear problems in least squares. Quart. Appl. Math. 2 (1944), 164-168. · Zbl 0063.03501
[9] L. Lukšan: Computational experience with improved variable metric methods for unconstrained minimization. Kybernetika 26 (1990), 415-431. · Zbl 0716.65055
[10] D. W. Marquardt: An algorithm for least squares estimation of non-linear parameters. SIAM J. Appl. Math. 11 (1963), 431-441. · Zbl 0112.10505 · doi:10.1137/0111030
[11] J. Militký: Mathematical Models Building. VI. Mineo, Technical House, Ostrava 1989.
[12] J. Militký O. Šenkýř L. Rudišar: Comparison of statistical software for nonlinear regression on IBM PC. COMPSTAT 90, Short communications, 1990, pp. 49-50.
[13] J. J. Moré: The Levenberg-Marquardt algorithm. Implementation and theory. Numerical Analysis (G. A. Watson, Springer Verlag, Berlin 1978. · Zbl 0372.65022
[14] J. J. Moré B. S. Garbow K. E. Hillström: Testing unconstrained optimization software. ACM Trans. Math. Software 7 (1981) 17-41. · Zbl 0454.65049
[15] J. J. Moré D. C. Sorensen: Computing a trust region step. SIAM J. Sci. Statist. Comput. 4 (1983), 553-572. · Zbl 0551.65042 · doi:10.1137/0904038
[16] M. J. D. Powell: A new algorithm for unconstrained optimization. Nonlinear Programming (J. B. Rosen, O. L. Mangasarian and K. Ritter, Academic Press, London 1970. · Zbl 0228.90043
[17] R. B. Schnabel E. Eskow: A new Choleski factorization. SIAM J. Sci. Statist. Comput. 11 (1990), 1136-1158. · Zbl 0716.65023
[18] G. A. Shultz R. B. Schnabel R. H. Byrd: A family of trust-region-based algorithms for unconstrained minimization with strong global convergence properties. SIAM J. Numer. Anal. 22 (1985) 47-67. · Zbl 0574.65061 · doi:10.1137/0722003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.