×

zbMATH — the first resource for mathematics

On Lagrange-Kuhn-Tucker multipliers for multiobjective optimization problems. (English) Zbl 0882.90114
Summary: Optimality conditions are established in terms of Lagrange-Fritz-John and Lagrange-Kuhn-Tucker multipliers for multiobjective optimization problems by scalarization technique.

MSC:
90C29 Multi-objective and goal programming
49K30 Optimality conditions for solutions belonging to restricted classes (Lipschitz controls, bang-bang controls, etc.)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Amaliroq T. Jourani A. Thibault L., A General Metric Regularity for Multifunctions in Asplund Banach Spaces Preprint
[2] Amaliroq T. Taa A. Optimality Condition5 for Multiobjective Optimization Problems with {\(\gamma\)}-paraconvex Data To appear
[3] Breckner W.W., Zeitschrift Analysis uni ihre Anwendungen 13 pp 725– (1994)
[4] DOI: 10.1080/01630569408816587 · Zbl 0831.49021
[5] Cilogot-Travain M. On Fritz-John Multipliers for Pareto Optimization Problems 1994 to appear (see also his thesis, (Faculté des Sciences de Pau 1994)
[6] Clarke, F.H. 1983. ”Optimization and Nonsmooth Analysis”. New-York: Wiley-Interscience. · Zbl 0582.49001
[7] DOI: 10.1007/BF00939767
[8] El Abdouni B. Thibault L. Conditions d’optimalité pour les Problèmes d’Optimization de Pareto dont les Objectifs sont des Multiapplications Doctorat d’etat. Université Mohamed V, Faculté des Sciences Rabat To appear This paper is in El Abdouni’s Thesis, 1995
[9] DOI: 10.1287/moor.4.1.79 · Zbl 0409.90086
[10] DOI: 10.1112/S0025579300013541 · Zbl 0713.49022
[11] Jourani A. Thibault L. Approximate Subdifferentials of Composite Functions, Bulletin of Australian Mathematical Society To appear
[12] Jourani A., C.R.A.S Paris 317 pp 825– (1993)
[13] DOI: 10.1007/BF00935364 · Zbl 0502.90076
[14] DOI: 10.1137/0322033 · Zbl 0552.58006
[15] DOI: 10.1007/BF00939223 · Zbl 0595.90080
[16] DOI: 10.1080/02331939608844169 · Zbl 0858.90112
[17] Thibault L., Optimization and Nonlinear Analysis Editor Ioffe (1990)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.