zbMATH — the first resource for mathematics

Smooth loops, generalized coherent states, and geometric phases. (English) Zbl 0883.22020
Summary: A description of generalized coherent states and geometric phases is given in the light of the general theory of smooth loops.

22E70 Applications of Lie groups to the sciences; explicit representations
81R30 Coherent states
Full Text: DOI arXiv
[1] Aharonov, Y. and Anandan, J. (1987).Physical Review Letters,58, 1593. · doi:10.1103/PhysRevLett.58.1593
[2] Baer, R. (1940).Transactions of the American Mathematical Society,46, 110. · JFM 66.0105.01
[3] Baer, R. (1941).Transactions of the American Mathematical Society,47, 435. · JFM 66.0099.02 · doi:10.1090/S0002-9947-1940-0002135-0
[4] Berry, M. V. (1984).Proceedings of the Royal Society A,392, 45. · Zbl 1113.81306 · doi:10.1098/rspa.1984.0023
[5] Giavarini, G., and Onofri, E. (1988). Generalized coherent states and Berry’s phase, UTF Preprint. · Zbl 0663.46081
[6] Nesterov, A. I. (1989). Methods of nonassociative algebra in physics, Dr. Sci. Theses, Institute of Physics, Estonian Academy of Science, Tartu. · Zbl 0696.90040
[7] Nesterov, A. I. (1990). InQuasigroups and Nonassociative Algebras in Physics, Transactions of the Institute of Physics of the Estonian Academy of Science, Vol. 66, p. 107.
[8] Nesterov, A. I., and Stepanenko, V. A. (1986). On methods of nonassociative algebra in geometry and physics, L. V. Kirensky Institute of Physics Preprint 400F.
[9] Pancharatnam, S. (1975).Proceedings of the Indian Academy of Science A,44, 247.
[10] Perelomov, A. M. (1972).Communications in Mathematical Physics,26, 22. · Zbl 0243.22016 · doi:10.1007/BF01645091
[11] Perelomov, A. M. (1986).Generalized Coherent States and Their Applications, Springer-Verlag, Berlin. · Zbl 0605.22013
[12] Sabinin, L. V. (1970).Soviet Mathematics Doklady,13, 970.
[13] Sabinin, L. V. (1972).Mathematical Notes,12, 799.
[14] Sabinin, L. V. (1988). InProceedings of Seminar on Vector and Tensor Analysis, (Moscow),23, 133.
[15] Sabinin, L. V. (1991).Analytic Quasigroups and Geometry, Friendship of Nations University, Moscow. · Zbl 0832.22003
[16] Sabinin, L. V. (1995).Russian Mathematical Surveys,49, 172. · doi:10.1070/RM1994v049n02ABEH002227
[17] Samuel, J., and Bhandari, R. (1988).Physical Review Letters,60, 2339. · doi:10.1103/PhysRevLett.60.2339
[18] Simon, B. (1983).Physical Review Letters,51, 2167. · doi:10.1103/PhysRevLett.51.2167
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.