zbMATH — the first resource for mathematics

Improper Eisenstein series on Bruhat-Tits trees. (English) Zbl 0884.11025
If \(\Delta(z)\) is the normalized cusp form of weight \(12\) for \(\text{SL}_{2}(\mathbb{Z})\), then the logarithmic derivative \(\Delta'(z)/\Delta(z)\), usually known as \(E_2(z)\), is almost a modular form of weight \(2\). \(E_2\) is invariant under translation by \(z\mapsto z+1\), but \(E_2(-1/z)-z^{2}E_2(z)\) is a simple non–zero function of \(z\) [see N. Koblitz, Introduction to elliptic curves and modular forms (Springer, Berlin 1984; Zbl 0553.10019), pp. 108-115].
This paper constructs an analogue \(H\) of \(E_{2}(z)\) for the rational function field in one variable over a finite field, and establishes many of its properties (Fourier coefficients, values, etc.) Let \(k=\mathbb{F}_q(T)\). Automorphic forms for \(\text{GL}_{2}(\mathbb{A}_k)\) can be interpreted as functions on the Bruhat-Tits tree \(T\) of \(G=\text{GL}_2(k_\infty)\), where \(k_\infty\) is the completion at the place at infinity of \(k\). The author constructs \(H\) in these terms. The resulting function is invariant by the upper triangular Borel subgroup of \(G\) and transforms in a simple way under the action of the matrix \(\left(\begin{smallmatrix} 0 &1\\ 1 &0\end{smallmatrix}\right)\) The function \(H\) is also closely related to the automorphic Eisenstein series for \(\text{GL}_2(\mathbb{A}_k)\). Functions on the tree \(T\) are also closely related to the Drinfeld modular forms on the upper half plane over \(k_\infty\). These are rigid analytic functions which play a role in the theory of moduli of Drinfeld’s elliptic modules similar to that of the classical modular forms in the moduli of elliptic curves. (See P. Deligne and D. Husemoller, Survey of Drinfeld modules, Contemp. Math. 67, 25-91 (1987; Zbl 0627.14026)).
The author outlines how the function \(H\) can be interpreted as the logarithmic derivative of the Drinfeld modular form \(\Delta(z)\), but leaves the proofs for another paper. The function \(H\) is constructed using Fourier analysis on the tree \(T\). In the course of the construction the author carefully explains the theory of Fourier analysis on \(T\), and the exposition in the paper is a useful “tree–based” complement to the paper “On the analogue of the modular group in characteristic \(p\)”, by A. Weil [in Functional analysis and related fields, Proc. Conf. in Honor of M. Stone, Chicago 1968, 211-223 (1970; Zbl 0226.10031)], see also his Collected Works.

11G09 Drinfel’d modules; higher-dimensional motives, etc.
11R58 Arithmetic theory of algebraic function fields
11F12 Automorphic forms, one variable
Full Text: DOI EuDML
[1] Deligne, P., Husemöller, D., Survey of Drinfeld modules, Contemp. Math. 67 (1987), 25–91.
[2] Drinfeld, V.G., Elliptic Modules, Math. Sbornik 94 (1974), 594–627 (Russian); English Translation: Math. USSR-Sbornik 23 (1976), 561–592
[3] Fresnel, J., van der Put, M., Géométrie Analytique Rigide et Applications, Progr. Math., vol. 18, Birkhäuser, Basel-Boston, 1981
[4] Gekeler, E.-U., Drinfeld-Moduln und modulare Formen über rationalen Funktionenkörpern, Bonner Math Schriften 119 (1980) · Zbl 0446.14018
[5] Gekeler, E.-U., A product expansion for the discriminant function of Drinfeld modules of rank two, J. Number Theory 21 (1985), 135–140 · Zbl 0572.10021
[6] Gekeler, E.-U., Automorphe Formen über \(\mathbb{F}_q (T)\) mit kleinem Führer, Abh. Math. Sem. Univ. Hamburg 55 (1985), 111–146 · Zbl 0564.10026
[7] Gekeler, E.-U., Drinfeld Modular Curves, Lect. Notes Math., vol. 1231, Springer, Berlin-Heidelberg-New York, 1986 · Zbl 0657.14012
[8] Gekeler, E.-U., On the coefficients of Drinfeld modular forms, Invent. Math. 93 (1988), 667–700 · Zbl 0653.14012
[9] Gekeler, E.-U., Analytical construction of Weil curves over function fields, J. Théorie des Nombres de Bordeaux, to appear · Zbl 0846.11037
[10] Gekeler, E.-U., Reversat, M., Jacobians of Drinfeld modular curves, submitted · Zbl 0848.11029
[11] Goss, D., {\(\pi\)}-adic Eisenstein Series for Function Fields Comp. Math. 41 (1980), 3–38 · Zbl 0388.10020
[12] Harder, G., Halbeinfache Gruppenschemata über Dedekindringen, Invent. Math. 4 (1967), 165–191 · Zbl 0158.39502
[13] Harder, G., Chevalley groups over function fields and automorphic forms, Ann. Math. 100 (1974), 249–306 · Zbl 0309.14041
[14] Harder, G., Li, W.-C.W., Weisinger, J. R., Dimensions of spaces of cusp forms over function fields, J. reine angew. Math. 319 (1980), 73–103 · Zbl 0431.22015
[15] Hoffstein, J., Eisenstein series and theta functions on the metaplectic group, in: Theta functions, M. Ram Murty (ed.), CRM Proceedings and Lecture Notes, vol. 1, AMS, Providence, 1993 · Zbl 0801.11025
[16] Mazur, B., Modular curves and the Eisenstein ideal, Publ. IHES 47 (1977), 33–186 · Zbl 0394.14008
[17] Rankin, R.A., Modular forms and functions, Cambridge University Press, Cambridge-London-New York-Melbourne, 1977 · Zbl 0376.10020
[18] Serre, J.-P., Trees, Springer, Berlin-Heidelberg-New York, 1980
[19] Tan, K.-S., Modular elements over function fields, J. Number Theory 45 (1993), 295–311 · Zbl 0802.11026
[20] Teitelbaum, J., Modular symbols for \(\mathbb{F}_q (T)\) , Duke Math. J. 68 (1992), 271–295 · Zbl 0777.11021
[21] Teitelbaum, J., The Poisson kernel for Drinfeld modular curves. J. Amer. Math. Soc. 4 (1991), 491–511 · Zbl 0735.11025
[22] Weil, A., On the analogue of the modular group in characteristicp, in: ”Functional Analysis, etc”, Proc. Conf. in honor of M. Stone, 211–223, Springer, Berlin-Heidelberg-New York, 1970 · Zbl 0226.10031
[23] Weil, A., Dirichlet series and automorphic forms, Lect. Notes Math., vol. 189, Springer, Berlin-Heidelberg-New York, 1971 · Zbl 0218.10046
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.