Abdukhalikov, K. S. The dual of a fuzzy subspace. (English) Zbl 0884.15003 Fuzzy Sets Syst. 82, No. 3, 375-381 (1996). The paper deals with fuzzy vector space [cf. R. Kumar, Fuzzy Sets Syst. 45, No. 1, 109-116 (1992)] and its dual space. Some analoguous of basis, direct sum and homomorphism properties in dual space are proved. Reviewer: J.Drewniak (Katowice) Cited in 2 ReviewsCited in 5 Documents MSC: 15A03 Vector spaces, linear dependence, rank, lineability 15B33 Matrices over special rings (quaternions, finite fields, etc.) 03E72 Theory of fuzzy sets, etc. 20N25 Fuzzy groups Keywords:fuzzy basis; fuzzy mapping; fuzzy vector space; dual space; direct sum PDF BibTeX XML Cite \textit{K. S. Abdukhalikov}, Fuzzy Sets Syst. 82, No. 3, 375--381 (1996; Zbl 0884.15003) Full Text: DOI OpenURL References: [1] Abdukhalikov, K. A.; Tulenbaev, M. S.; Umirbaev, U. U., On fuzzy bases of vector spaces, Fuzzy Sets and Systems, 63, 201-206 (1994) · Zbl 0844.15005 [2] Katsaras, A. K.; Liu, D. B., Fuzzy vector and fuzzy topological vector spaces, J. Math. Anal. Appl., 58, 135-146 (1977) · Zbl 0358.46011 [3] Kostrikin, A. I.; Manin, Yu. I., Linear Algebra and Geometry (1980), Moscow University: Moscow University Moscow · Zbl 0532.00002 [4] Kumar, R., Fuzzy vector spaces and fuzzy cosets, Fuzzy Sets and Systems, 45, 109-116 (1992) · Zbl 0747.15001 [5] Lubczonok, P., Fuzzy vector spaces, Fuzzy Sets and Systems, 38, 329-343 (1990) · Zbl 0727.15002 [6] Malik, D. S.; Mordeson, J. N., Fuzzy vector spaces, Inform. Sci., 55, 271-281 (1991) · Zbl 0727.15001 [7] Mordeson, J. N., Bases of vector spaces, Inform. Sci., 67, 87-92 (1993) · Zbl 0797.46060 [8] Pan, Fu-Zheng, Fuzzy finitely generated modules, Fuzzy Sets and Systems, 21, 105-113 (1987) · Zbl 0616.16013 [9] Zadeh, L. A., Fuzzy sets, Inform. and Control, 8, 338-353 (1965) · Zbl 0139.24606 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.