×

zbMATH — the first resource for mathematics

Involutive Lie algebras graded by finite root systems and compact forms of IM algebras. (English) Zbl 0884.17012
An intersection-matrix (IM) Lie algebra is defined through an analogue of the Chevalley basis of a simple Lie algebra associated with an intersection matrix \(A= (a_{ij})_{n\times n}\) \((a_{ii}=2\), \(a_{ij}<0 \iff a_{ji}<0\), \(0<a_{ij} \iff 0<a_{ji}\)). For any IM algebra, there exists an analogue of the Chevalley involution. The author shows that the fixed-point subalgebra of this involution is isomorphic to a certain Steinberg unitary Lie algebra which was introduced by B. N. Allison and J. R. Faulkner [J. Algebra 161, 1-19 (1993; Zbl 0812.17002)]. Moreover, the author introduces an analogue of the elementary unitary Lie algebra of other types and studies involutive Lie algebras graded by finite root systems.

MSC:
17B67 Kac-Moody (super)algebras; extended affine Lie algebras; toroidal Lie algebras
Citations:
Zbl 0812.17002
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] B. N. Allison, J. R. Faulkner, Nonassociative coefficient algebras for Steinberg unitary Lie algebras, J. Algebra161 (1993) 1–19. · Zbl 0812.17002
[2] G. M. Benkart, E. Zelmanov, Lie algebras graded by finite root systems and intersection matrix algebras, Invemt. Math. (to appear) · Zbl 0871.17024
[3] S. Berman, On generators and relations for certain involutory subalgebras of Kac-Moody Lie algebras, Comm. in Alg.17 (1989) 3165–3185. · Zbl 0693.17012
[4] S. Berman, R. V. Moody, Lie algebras graded by finite root systems and the intersection matrix algebras of Slodowy, Invent. Math.108 (1992) 323–347. · Zbl 0778.17018
[5] R. Borcherds, Generalized Kac-Moody algebras, J. Alg.115 (1988) 501–512. · Zbl 0644.17010
[6] N. Bourbaki, Groupes et algèbres de Lie, Chap. IV, V, VI. Paris: Hermann 1968
[7] R. W. Carter, Simple groups of Lie type, London: Wiley 1972 · Zbl 0248.20015
[8] Y. Gao, Skew-dihedral homology and involutive Lie algebras graded by finite root systems, Ph D Thesis, University of Saskatchewan 1994
[9] Y. Gao, Steinberg unitary Lie algebras and skew-dihedral homology, J. Algebra179 (1996), 261–304. · Zbl 0837.17011
[10] H. Garland, The arithmetic theory of loop groups, Publ. Math. IHES52 (1980) 5–136. · Zbl 0475.17004
[11] M. Goto, F. D. Grosshans, Semisimple Lie algebras, Lect. Notes. Pure. Appl. Math. Vol38, New York: M. Dekker 1978 · Zbl 0391.17004
[12] J. B. Humphreys, Introduction to Lie algebras and representation theory, Grad. Texts Math, Vol9, Springer 1972 · Zbl 0254.17004
[13] V. G. Kac, Infinite dimensional Lie algebras, third edition, Cambridge Univ. Press 1990 · Zbl 0716.17022
[14] R. V. Moody, A. Pianzona, Lie algebras with triangular decomposition, New York: J. Wiley 1995
[15] E. Neher, Lie algebras graded by 3-graded root systems, Amer. J. Math.118 (1996), 439–491. · Zbl 0857.17019
[16] A. A. Sagle, R. E. Walde, Introduction to Lie groups and Lie algebras, Academic Press, New York and London 1973. · Zbl 0252.22001
[17] G. Seligman, Rational methods in Lie algebras, Lect. Notes Pure Appl. Math, New York: M. Dekker 1976 · Zbl 0334.17002
[18] P. Slodowy, Beyond Kac-Moody algebras and inside, Can. Math. Soc. Conf. Proc.5 (1986) 361–371. · Zbl 0582.17011
[19] P. Slodowy, Singularitäten, Kac-Moody Lie algebren, assoziierte Gruppen und Verallgemeinerungen, Habiliationsschrift, Universitát Bonn (March 1984)
[20] R. Steinberg, Lectures on Chevalley groups,(notes by J. Faulkner & R. Wilson), Yale Univ. Lect. Notes 1967 · Zbl 0164.34302
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.