×

Exact sequences for the Galois group. (English) Zbl 0884.18010

Let \({\mathcal C}\) be a symmetric closed category with equalizers and co-equalizers and let \({\mathbf H}\) be a finite commutative and co-commutative Hopf algebra in \({\mathcal C}\). To these data, one may associate a Picard group \(\text{Pic} ({\mathcal C}, {\mathbf H})\) and a Brauer group \(BM({\mathcal C}, {\mathbf H})\) of left \({\mathbf H}\)-modules, as well as a Galois group \(\text{Gal}_{\mathcal C} ({\mathbf H})\).
Let \(F:{\mathcal C} \to {\mathcal C}'\) be a monoidal functor between categories of the above type. Then the authors construct, through \(K\)-theoretic methods, exact sequences involving the above groups and generalizing similar ones due to Caenepeel, Beattie and the authors.

MSC:

18D15 Closed categories (closed monoidal and Cartesian closed categories, etc.)
19D23 Symmetric monoidal categories
16W30 Hopf algebras (associative rings and algebras) (MSC2000)
18D10 Monoidal, symmetric monoidal and braided categories (MSC2010)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abe E., Hopf Algebras (1977)
[2] DOI: 10.1090/S0002-9947-1960-0121392-6 · doi:10.1090/S0002-9947-1960-0121392-6
[3] Barja J.M., Alxebra 20 (1977)
[4] Bass M., Algebraic K-Theory (1968)
[5] Bass M., Topics in Algebraic K-Theory (1969) · Zbl 0226.13006
[6] DOI: 10.1016/0021-8693(76)90134-4 · Zbl 0342.16010 · doi:10.1016/0021-8693(76)90134-4
[7] DOI: 10.1016/0021-8693(69)90102-1 · Zbl 0165.32902 · doi:10.1016/0021-8693(69)90102-1
[8] DOI: 10.1007/BF02764611 · Zbl 0724.13002 · doi:10.1007/BF02764611
[9] Chase S.U., Hopf algebras and Galois theory 97 (1969) · Zbl 0197.01403 · doi:10.1007/BFb0101433
[10] Ellemberg, S. and Kelly, G.M. Closed Categories. Proceedings in a Conference on Categorical Algebra. 1966, La Jolla. pp.421–562. Berlin: Springer Verlag.
[11] Fernández Vilaboa J.M., Alxebra 42 (1985)
[12] Fernández Vilaboa J.M., Naturaiidad respecto a un funtor monoidal de la sucesión exacta rota 0 B(C) BM(C H) Galc(H) 0 (1985)
[13] Fernández Vilaboa J.M., The exact sequence Pic(C) Pic(C 1) K1A(F) B(C) B(C1) for a monoidal functor between closed categories (1985)
[14] Fernández Vilaboa J.M., The Picard-Brauer five term exact sequence for a cocommutative finite Hopf algebra (1985) · Zbl 0870.18008
[15] Gonzalez Rodriguez R., La sucesidn exacta Pic(C) Pic(D) K1A(F)B(C)B(D) en categorias cerradas. Aplicacion a la teoria de invariantes relativos de haces de modulos (1994)
[16] López López M.P., Alxebra 25 (1980)
[17] Maclane S., Categories for the working mathematicien, G.T.M 5 (1971)
[18] Pareigis, B. 1976.Non additive ring and module theory IV: The Brauer group of a symmetric monoidal category, Vol. 549, 112–133. New York: Springer Verlag. Lecture Notes in Math · Zbl 0362.18011
[19] Sweedler M.E., Hopf Algebras (1969)
[20] Sweedler, M.E. 1965.Cohomology of algebras over Hopf algebras, Vol. 133, 205–239. Transactions of the A.M.S. · Zbl 0164.03704
[21] Vldal C., Alxebra 48 (1988)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.