×

zbMATH — the first resource for mathematics

A singular perturbation problem for an envelope equation in plasma physics. (English) Zbl 0884.35097
Summary: We investigate the so-called Langmuir wave envelope approximation, which consists in taking the limit \(\omega\rightarrow\infty\) in the nonlinear plasma wave equation \[ 1/\omega^2\partial^2_tE_\omega-2i\partial_tE_\omega-\Delta E_\omega=f(|E_\omega|^2)E_\omega, \] stated for nonlinearities satisfying \(|f(\rho)|\leq K \rho^\sigma\). For any finite value of \(\omega>1\), the solution \(E_\omega\) with the initial data \(E_\omega(x,t=0) \in H^2(\mathbb{R}^n),\partial_tE_\omega(x,t=0)\in H^1(\mathbb{R}^n)\) is shown to exist locally in time and to be unique. Under some specific conditions including \(\omega\) below a threshold value, we construct solutions \(E_\omega\) that blow up in a finite time with a divergent \(L^2\) norm; nevertheless, in the so-called subcritical case (\(\sigma n <2\)), the solution defined for fixed initial data is global provided that \(\omega\) should be large enough. We demonstrate the strong convergence of \(E_\omega\) towards the nonlinear Schrödinger solution \(E\) reached as \(\omega\rightarrow\infty\), as long as \(E\) exists. In this same limit, we finally discuss the behavior of the time derivative of \(E_\omega\) and compare the blow-up times associated with \(E_\omega\) and with its time-enveloped counterpart \(E\).

MSC:
35L70 Second-order nonlinear hyperbolic equations
35Q55 NLS equations (nonlinear Schrödinger equations)
76X05 Ionized gas flow in electromagnetic fields; plasmic flow
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Rudakov, L.I.; Tsytovitch, V.N.: Strong Langmuir turbulence. Phys. rep. 40, 1-73 (1978)
[2] Goldman, M.V.: Strong turbulence of plasma waves. Rev. mod. Phys. 56, 709-735 (1984)
[3] Briand, J.; Berge\'{}, L.; Gomes, A.; Quemener, Y.; Arnas, C.; Armengaud, M.; Dinguirard, J.P.; Pesme, D.: Strong Langmuir turbulence and second harmonic spectra in a \(1 {\mu}\)m laser-produced plasma. Phys. fluids B 2, 160-165 (1990)
[4] Nicholson, D.R.: Introduction to plasma theory. 177-181 (1983)
[5] Zakharov, V.E.: Collapse of Langmuir waves. Sov. phys. JETP 35, 908-914 (1972)
[6] Budneva, O.B.; Zakharov, V.E.; Synakh, V.S.: Certain models of wave collapse. Sov. J. Plasma phys. 1, 335-338 (1975)
[7] Zakharov, V.E.; Shur, L.N.: Self-similar regimes of wave collapse. Sov. phys. JETP 54, 1064-1070 (1981)
[8] Malkin, V.M.; Khudik, V.N.: Self-similar Langmuir collapse. Physica D 52, 55-58 (1991) · Zbl 0735.76088
[9] Berge\'{}, L.; Dousseau, Ph.; Pelletier, G.; Pesme, D.: Self-similar Langmuir collapse at critical dimension. Laser and part. Beams 9, 363-370 (1991)
[10] Kaw, P.; Schmidt, G.; Wilcox, T.: Filamentation and trapping of electromagnetic radiations in plasmas. Phys. fluids 16, 1522-1525 (1973)
[11] Anderson, D.; Bonnedal, M.: Variational approach to nonlinear self-focusing of Gaussian laser beams. Phys. fluids 22, 105-109 (1979)
[12] Rasmussen, J.J.; Rypdal, K.: Blow-up in nonlinear Schrödinger equations - I: A general review. Phys. scr. 33, 481-497 (1986) · Zbl 1063.35545
[13] Ginibre, J.; Velo, G.: The global Cauchy problem for the nonlinear Schrödinger equation revisited. Ann. inst. Henri Poincarè, anal. Non line\'{}aire 2, 309-402 (1985) · Zbl 0586.35042
[14] Glassey, R.T.: On the blowing up solutions to the Cauchy problem for nonlinear Schrödinger equations. J. math. Phys. 18, 1794-1797 (1977) · Zbl 0372.35009
[15] Kato, T.: Nonlinear Schrödinger equations. Lecture note in physics 345 (1988)
[16] Colin, T.: On the Cauchy problem for a nonlocal, nonlinear Schrödinger equation occurring in plasma physics. Differ. integ. Eq. 6, 1431-1450 (1993) · Zbl 0780.35104
[17] Colin, T.: On the standing waves solution to a nonlocal, nonlinear Schrödinger equation occurring in plasma physics. Physica D 64, 215-236 (1993) · Zbl 0780.35105
[18] L. Berge\'{}et T. Colin, Un proble‘me de perturbation singulie‘re pour unee\'{}quation d’enveloppe en physique des plasmas, in: Comptes Rendus de l’Acade\'{}mie des Sciences de Paris, t 320 Se\'{}rie I, 31–34.
[19] Segal, I.: Nonlinear semi-groups. Ann. math. 78 (1963) · Zbl 0204.16004
[20] Levine, H.A.: Instability and nonexistence of global solutions to nonlinear wave equations of the form putt = -au + &z.hfl;(u). Trans. amer. Math. soc. 192, 1-21 (1974) · Zbl 0288.35003
[21] Friedman, A.: Partial differential equation of parabolic type. (1964) · Zbl 0144.34903
[22] Tsutsumi, M.: Nonrelativistic approximation of nonlinear Klein-Gordon equations in two space dimensions. Nonlinear analysis, TMA 8, 637-643 (1984) · Zbl 0547.35111
[23] Najman, B.: The nonrelativistic limit of the nonlinear Klein-Gordon equation. Nonlinear analysis TMA 15, 217-228 (1990) · Zbl 0727.35122
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.