Travelling wave analysis of an isothermal Euler-Poisson model. (English) Zbl 0884.35126

The authors present a travelling wave analysis of the isothermal Euler equations. Soliton, shock, and nonlinear wave solutions are considered.


35Q35 PDEs in connection with fluid mechanics
76L05 Shock waves and blast waves in fluid mechanics
Full Text: DOI Numdam EuDML


[1] Ascher, U.), Markowich, P.), Pietra, P.) and Schmeiser, C.) .- A phase plane analysis of transonic solutions for the hydrodynamic semiconductor model, Math. Models and Methods in Appl. Sci., Vol. 1, n° 3 (1991), pp. 347-376. · Zbl 0800.76032
[2] Cordier, S.), Degond, P.), Markowich, P.) and Schmeiser, C.). - Travelling wave analysis and jump relations for Euler-Poisson model in the quasineutral limit, Asymptotic Analysis11 (1995), pp. 209-240. · Zbl 0849.35105
[3] Degond, P.) and Markowich, P.) .- On a one dimensional steady state model for semiconductors, Appl. Math. Lett.3 (1989), pp. 25-29. · Zbl 0736.35129
[4] Brenier, Y.) .- A Vlasov-Poisson type formulation of the Euler equations, rapport I.N.R.I.A. 1070 (1989).
[5] Brenier, Y.) and Grenier, E.) . - Mesures de défaut de Vlasov-Poisson dans le régime de quasineutralité: le cas indépendant du temps, Note aux C.R. Acad. Sci.Paris (Série I), 318 (1994), pp. 121-124. · Zbl 0803.35110
[6] Brézis, H.), Golse, F.) and Sentis, R.) .- Quasineutralité des plasmas, C.R. Acad. Sci.Paris (Série 1), 321 (1995), p. 953. · Zbl 0839.76096
[7] Markowich, P.), Ringhoffer, C.) and Schmeiser, C.) .- Semiconductors equations, Springer-Verlag, Wien, 1990. · Zbl 0765.35001
[8] Tidmann, D.A.) and Krall, N.A.) .- Shock waves in collisionless plasmas, Wiley-Interscience, 1971.
[9] Chen, E.F.) .- Introduction to plasma physics, Plenum Press, 1977.
[10] Cordier, S.) .- Hyperbolicity of multispecies hydrodynamic model of plasma under the Quasineutrality hypothesis, Math. Models and Methods in Appl. Sci., 18 (1995), pp. 627-647. · Zbl 0828.35076
[11] Godlevski, E.) and Raviart, P.A.) .- Hyperbolic systems of conservation laws, Ellipses, 1991. · Zbl 0768.35059
[12] Cordier, S.) . - Modélisation mathématique et simulation numérique du plasma magnétosphérique, Thèse, Ecole Normale Supérieure de Cachan (1994). Modélisation et Analyse Numérique (1994).
[13] Smoller, J.) .- Shock waves and reaction diffusion equations, Grundlehren der mathematischen Wissenschaften, Springer-Verlag258 (1983). · Zbl 0508.35002
[14] Dal Maso, G.), Le Floch, P.) and Murat, F.), .- Definition and weak stability of nonconservative product, J. Math. Pures et Appliquées, 74 (1995), pp. 483-548. · Zbl 0853.35068
[15] Ben Abdallah, N.), Mas-Gallic, S.) and Raviart, P.-A.) .- Analyse asymptotique d’un modèle d’émission d’ions, C.R. Acad. Sci.Paris (Série I), 316 (1993), pp. 779-783. · Zbl 0773.34043
[16] Guo, Y.) and Ragazzo, C.G.) .- On steady states in a collisionless plasma, Comm. in Pure and Applied Math., to appear. · Zbl 0853.76097
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.