×

Optimal times for constrained nonlinear control problems without local controllability. (English) Zbl 0884.49002

In this article the minimal time problem for a closed target \(C\) with state constraints given by a closed set \(K\) without local controllability at the target is considered. The basic difficulty of this setup is given by the fact that the optimal value function in general is discontinuous for this problem.
The authors derive three main results: The epigraph of the optimal value function is shown to be the viability kernel of a suitable extended differential inclusion corresponding to the control system, an algorithm for the computation of viability kernels is adapted to this problem, thus admitting a numerical solution for the problem, and the optimal value function is characterized to be the smallest supersolution of a suitable Hamilton-Jacobi equation.
The results are obtained by a consequent use of viability theory applied to the differential inclusion \(\bigcup_{u\in U}f(x,u)\) where \(f\) is the right hand side of the control system. The main limitation for the applicability of the results is given by the fact that this differential inclusion is supposed to be a Marchaud-set-valued map. However, apart from this restriction the paper gives an elegant approach to deal with both the analytic and numerical difficulties of this problem.

MSC:

49J15 Existence theories for optimal control problems involving ordinary differential equations
65K10 Numerical optimization and variational techniques
93C15 Control/observation systems governed by ordinary differential equations
49L25 Viscosity solutions to Hamilton-Jacobi equations in optimal control and differential games
49J24 Optimal control problems with differential inclusions (existence) (MSC2000)
Full Text: DOI

References:

[1] Aubin J-P (1992) Viability Theory, Birkhäuser, Basel
[2] Aubin J-P, Cellina A (1984) Differential Inclusions Springer-Verlag, Berlin
[3] Aubin J-P, Frankowska H (1991) Set-Valued Analysis, Birkhäuser, Basel
[4] Bardi M (1989) A boundary value problem for the minimum time function, SIAM J Control Optim 26:776–785 · Zbl 0682.49034 · doi:10.1137/0327041
[5] Bardi M, Falcone M, Soravia P (1993) Fully discrete schemes for the value function of pursuit-evasion games, in Annals of Dynamic Games, vol 1, pp 89–105, Basar T, Haurie A, eds, Birkaüser, Basel · Zbl 0828.90147
[6] Bardi M, Staicu V (1993) The Bellman equation for time-optimal control of noncontrollable, nonlinear systems, Acta Appl Math 31:201–223 · Zbl 0797.49025 · doi:10.1007/BF00997118
[7] Barles G (1993) Discontinuous viscosity solutions of first-order Hamilton-Jacobi equations: a guided visit, Nonlinear Anal TMA 9:1123–1134 · Zbl 0816.35081 · doi:10.1016/0362-546X(93)90098-D
[8] Barles G, Perthame B (1987) Discontinuous solutions of deterministic optimal stopping time problems, RAIRO Model Math Anal Numér II:557–579 · Zbl 0629.49017
[9] Barles G, Perthame B (1988) Exit time problems in optimal control and vanishing viscosity method, SIAM J Control and Optim 26:1133–1148 · Zbl 0674.49027 · doi:10.1137/0326063
[10] Barron E, Jensen R (1992) Optimal control and semicontinuous viscosity solutions, Proc Amer Math Soc 113:397–402 · Zbl 0741.49010 · doi:10.1090/S0002-9939-1991-1076572-8
[11] Bernhard P (1988) Differential games: Isaacs equation, in Systems & Control Encyclopedia, Theory, Technology Applications, Singh MG, ed, Pergamon Press, Oxford
[12] Capuzzo-Dolcetta I, Falcone M (1989) Discrete dynamic programming and viscosity solutions of the Bellman equation, Ann Inst H Poincaré Anal Non Linéaire 6:161–183 · Zbl 0674.49028
[13] Carathéodory C (1935) Calculus of Variations and Partial Differential Equations of the First Order (1989 edn), Chelsea, New York · Zbl 0014.06803
[14] Cardaliaguet P, Quincampoix M, Saint-Pierre P (1994) Some algorithms for differential games with two players and one target, Math Modelling Numer Anal 28(4):441–461 · Zbl 0821.90145
[15] Cardaliaguet P, Quincampoix M, Saint-Pierre P (1994) Temps optimaux pour des problèmes de contrôle avec contraintes et sans contrôlabilité locale, C R Acad Sci Paris 318:607–612 · Zbl 0799.49017
[16] Crandall MG, Lions P-L (1983) Viscosity solutions of Hamilton-Jacobi equations, Trans Amer Math Soc 277:1–42 · Zbl 0599.35024 · doi:10.1090/S0002-9947-1983-0690039-8
[17] Fleming WH, Rischel RW (1975) Deterministic and Stochastic Optimal Control, Springer-Verlag, New York
[18] Fleming WH, Soner MH (1993) Controlled Markov Processes and Viscosity Solutions, Springer-Verlag, New York · Zbl 0773.60070
[19] Frankowska H (1987) L’équation d’Hamilton-Jacobi contingente, C R Acad Sci Paris Sér I 304:295–298
[20] Frankowska H (1989) Optimal trajectories associated to a solution of contingent Hamilton-Jacobi equations, Appl Math Optim 19:291–311 · Zbl 0672.49023 · doi:10.1007/BF01448202
[21] Frankowska H (1993) Lower semicontinuous solutions of Hamilton-Jacobi-Bellman equations, SIAM J Control Optim 31(1):257–272 · Zbl 0796.49024 · doi:10.1137/0331016
[22] Ishii H (1989) A boundary value problem of the Dirichlet type for Hamilton-Jacobi equations, Ann Scuola Norm Sup Pisa 16:105–135 · Zbl 0701.35052
[23] Quincampoix M (1992) Differential inclusions and target problems, SIAM J Control Optim 30(2):324–335 · Zbl 0862.49006 · doi:10.1137/0330020
[24] Quincampoix M, Saint-Pierre P (1995) An algorithm for viability kernels in the Hölderian case: approximation by discrete viability kernels, J Math Systems Estim Control 5(1):115–118 · Zbl 0831.34016
[25] Rozyev I, Subbotin AI (1988) Semicontinuous solutions of Hamilton-Jacobi equations, PMM USSSR 52(2):141–146 · Zbl 0691.90098
[26] Saint-Pierre P (1994) Approximation of the viability kernel, Appl Math Optim 29:187–209 · Zbl 0790.65081 · doi:10.1007/BF01204182
[27] Soner MH (1986) Optimal control problems with state-space constraints, SIAM J Control Optim 24:552–562 and 1110–1122 · Zbl 0597.49023 · doi:10.1137/0324032
[28] Soravia P (1993) Discontinuous viscosity solutions to Dirichlet problems for Hamilton-Jacobi equations with convex Hamiltonians, Comm Partial Differential Equations 18:1493–1514 · Zbl 0788.49028 · doi:10.1080/03605309308820983
[29] Subbotin AI (1993) Discontinuous solutions of a Dirichlet type boundary value problem for first order partial differential equations, Russian J Anal Math Modelling 8:145–164 · Zbl 0821.35027
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.