zbMATH — the first resource for mathematics

Critical points for multiple integrals of the calculus of variations. (English) Zbl 0884.58023
This paper is devoted to the existence of critical points for functionals defined on \(W^{1,p}_0 (\Omega)\) by \[ J(u)= \int_\Omega {\mathcal I} (x,u,Du) dx. \] Here \(p>1\), \(\Omega\) is bounded and open in \({\mathbb R}^N\), and \(Du\) denotes the gradient of \(u\). As those functionals may fail to be differentiable, the authors prove a version of the mountain pass lemma which is applicable to such more general situations. Applications are given to the existence and multiplicity of nonnegative critical points. The results are related to earlier ones of Corvellec, Degiovanni and Marzocchi, and of Boccardo, Murat and Puel.

58E05 Abstract critical point theory (Morse theory, Lyusternik-Shnirel’man theory, etc.) in infinite-dimensional spaces
Full Text: DOI
[1] Ambrosetti, A. Critical points and nonlinear variational problems. Supplement au Bulletin Soc. Math. France, Mémoire n. 49, 1992. · Zbl 0766.49006
[2] Ambrosetti, A. & Prodi, G., On the inversion of some differentiate mappings with singularities between Banach spaces. Ann. Math. Pura Appl. 93 (1972), 231-246. · Zbl 0288.35020
[3] Ambrosetti, A. & Rabinowitz, P. H., Dual variational methods in critical point theory and applications. J. Funct. Anal. 14 (1973), 349-381. · Zbl 0273.49063
[4] Anane, A., Simplicité et isolation de la première valeur propre du-laplacien avec poids. C. R. Acad. Sci. Paris 1 (1988), 341-348.
[5] Arcoya, D. & Boccardo, L., Nontrivial solutions to some nonlinear equations via minimization. To appear in Proc. International Conference on Nonlinear P.D.E., Erice (Italy), May 1992. · Zbl 0849.49004
[6] Arcoya, D. & Boccardo, L., A min-max theorem for multiple integrals of the Calculus of Variations and applications. To appear in Rend. Mat. Acc. Lincei. · Zbl 0831.49012
[7] Arcoya, D. & Calahorrano, M., Multivalued non-positone problems. Rend. Mat. Acc. Lincei, Ser. 9, 1 (1990), 117-123. · Zbl 0719.35024
[8] Arcoya, D., Drábek, P. & Zertiti, A., Minimization problem for some degenerated functional: nonnegative and bounded solutions. Preprint (1994). · Zbl 0855.35030
[9] Aubin, J. P. & Ekeland, I., Applied nonlinear analysis. Wiley, Interscience, New York, 1984. · Zbl 0641.47066
[10] Benci, V. & Rabinowitz, P. H., Critical point theorems for indefinite functional. Invent. Math. 52 (1979), 241-273. · Zbl 0465.49006
[11] Boccardo, L., Gallouet, T. & Murat, F., A unified presentation of two existence results for problems with natural growth. Pitman Research Notes in Mathematics 296 (1993), 127-137. · Zbl 0806.35033
[12] Boccardo, L., Murat, F. & Puel, J. P., Résultats d’existence pour certains problèmes elliptiques quasilinéaires. Ann. Scuola Norm. Sup. Pisa. 11 (1984), 213-235. · Zbl 0557.35051
[13] Boccardo, L., Murat, F. & Puel, J. P., Existence of bounded solutions for nonlinear unilateral problems. Ann. Mat. Pura Appl. 152 (1988), 183-196. · Zbl 0687.35042
[14] Brezis, H. & Nirenberg, L. Remarks on finding critical points. Comm. Pure Appl. Math. 44 (1991), 939-963. · Zbl 0751.58006
[15] Canino, A., Multiplicity of solutions for quasilinear elliptic equations. Preprint (1994). · Zbl 0863.35038
[16] Chang, K. C., Variational methods for nondifferentiable functional and their applications to partial differential equations. J. Math. Anal. Appl. 80 (1981), 102-129. · Zbl 0487.49027
[17] Dacorogna, B., Direct methods in the calculus of variations. Springer-Verlag, 1989. · Zbl 0703.49001
[18] De Figueiredo, D. G., The Ekeland variational principle with applications and detours. Springer-Verlag, 1989. · Zbl 0688.49011
[19] De Figueiredo, D. G. & Solimini, S., A variational approach to superlinear elliptic problems. Comm. Partial Diff. Eqs. 9 (1984), 699-717. · Zbl 0552.35030
[20] Ekeland, I., Nonconvex minimization problems. Bull. Amer. Math. Soc. (NS) 1 (1979), 443-474. · Zbl 0441.49011
[21] Lady?enskaya, O. A. & Uralceva, N. N., Linear and quasilinear elliptic equations. Academic Press, New York, 1968.
[22] Leoni, G., Existence of solutions for holonomic dynamical systems with homogeneous boundary conditions. Nonlinear Anal. 23 (1994), 427-445. · Zbl 0819.34017
[23] Ma, Li, On nonlinear eigen-problems of quasilinear elliptic operators. J. Partial Diff. Eqs. 4 (1991), 56-72. · Zbl 0761.35081
[24] Mawhin, J. & Willem, M., Critical point theory and Hamiltonian systems. Springer-Verlag, 1989. · Zbl 0676.58017
[25] Morrey, C. B., Multiple integrals in the calculus of variations. Springer-Verlag, 1966. · Zbl 0142.38701
[26] Pucci, P. & Serrin, J., A mountain pass theorem. J. Diff. Eqs. 60 (1985), 142-149. · Zbl 0585.58006
[27] Rabinowitz, P. H., Minimax methods in critical point theory with applications to differential equations. CBMS Regional Conference Series Math. 65, Amer. Math. Soc., Providence, 1986. · Zbl 0609.58002
[28] Struwe, M., Variational methods. Springer-Verlag, 1990. · Zbl 0746.49010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.