×

zbMATH — the first resource for mathematics

A domain decomposition method for the Helmholtz equation and related optimal control problems. (English) Zbl 0884.65118
A domain decomposition method (splitting the domain into smaller sub-domains and solving a sequence of similar sub-problems on these sub-domains) is described for the exterior Helmholtz equation with the lowest order absorbing boundary condition and for its extension to optimal control problems governed by this equation. The transmission conditions (interface conditions) are reformulated as mixed (Robin) boundary conditions to assert the problem being well-posed.
A Helmholtz adaption of the Schwarz algorithm for elliptic problems [cf. P. L. Lions, in: T. F. Chan et el. (ed.), Third Int. Symp. Domain Decomp. Meth., SIAM, Philadelphia, 202-223 (1990; Zbl 0704.65090)] is defined to ensure the transmission conditions through an iterative technique. At each step of that iterative procedure the resolution of each sub-problem is explicit. A slight modification by introduction of a relaxation parameter improves the convergence. All these techniques are repeated and generalized to linear optimal control problems, especially to those with non-local cost functions. Detailed hints to further problems [e.g. wave guides, relations to the method of perfectly matched layers, cf. J.-P. Berenger, J. Comput. Phys. 114, No. 2, 185-200 (1994; Zbl 0814.65129)] are given.
The numerical example found in the paper is convincing: a plane wave, arriving an annular resonator (with an open section of angle \(\pi /8\)), showing the scattered field with multiple reflections inside of the hard resonator, and the optimal control solution where the reflection is killed inside of the resonator. In the example each finite element is taken to be a sub-domain in the decomposition, thus, the algorithm reduces to explicit formulae (and transmission of data). Massively parallel strategy has been applied [cf. the first author in D. H. Bailey et al. (ed.), Seventh SIAM Conf. Parallel Proc. San Francisco, 90-95 (1995; Zbl 0836.65083)].

MSC:
65N55 Multigrid methods; domain decomposition for boundary value problems involving PDEs
65F10 Iterative numerical methods for linear systems
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bayliss, A.; Turkel, E., Radiation boundary conditions for wave like equations, Comm. pure appl. math., 33, 707, (1980) · Zbl 0438.35043
[2] J. D. Benamou, 1995, A domain decomposition method for the optimal control of system governed by the Helmholtz equation, Third International Conference on Mathematical and Numerical Wave Propagation Phenomena, 653, SIAM, Philadelphia · Zbl 0870.65051
[3] J. D. Benamou, 1995, A massively parallel algorithm for the optimal control of systems governed by elliptic p.d.e.’s, Seventh SIAM Conference on Parallel Processing for Scientific Computing, San Francisco, SIAM, Philadelphia · Zbl 0836.65083
[4] Benamou, J.D., Domain decomposition methods with coupled transmission conditions for the optimal control of systems governed by elliptic partial differential equations, SIAM J. numer. anal., 33, (1996) · Zbl 0916.49024
[5] Berenger, J., A perfectly matched layer for the absorption of electromagnetic waves, J. comp. phys., 114, 185, (1994) · Zbl 0814.65129
[6] Bouche, D.; Molinet, F., Méthodes asymptotiques en électromagnétisme, (1989), Masson Paris
[7] Cai, X.-C.; widlund, O.B., Domain decomposition algorithm for indefinite elliptic problems, SIAM. J. sci. stat. comput., 13, 243, (1992) · Zbl 0746.65085
[8] Cai, X.-C.; Widlund, O.B., Multiplicative algorithms for some nonsymmetric and indefinite problems, SIAM J. numer. anal., 30, 936, (1993) · Zbl 0787.65016
[9] Cessenat, O.; Despres, B., Une nouvelle formulation variationnelle des équations d’ondes en fréquence. application au problème de Helmholtz 2d, Technical report, 2779, (1994)
[10] F. Collino, Perfectly matched absorbing layers for the paraxial equations, J. Comp. Phys. · Zbl 0866.73013
[11] F. Collino, P. Monk, The perfectly matched layer in curvilinear coordinates, SIAM J. Sci. Comput. · Zbl 0940.78011
[12] Colton, D.; Kress, R., Integral equation method in scattering, (1983), Wiley-Interscience New York
[13] Colton, C.; Kress, R., Inverse acoustic and electromagetic scattering theory, (1992), Springer-Verlag Berlin/New York
[14] de la Bourdonnaye, A., A substructuring method for a harmonic wave propagating problem: analysis of the conditioning number of the problem on the interfaces, Technical report, 95-35, (1995)
[15] B. Després, 1991, Méthodes de décomposition de domaine pour les problèmes de propagation d’ondes en régimes harmoniques · Zbl 0849.65085
[16] B. Després, 1993, Domain decomposition method and the Helmholtz problem, ii, Second International Conference on Mathematical and Numerical Aspects of Wave Propagation Phenomena, R. KleinmanT. AngellD. ColtonF. SantosaI. Stackgold, 197, SIAM, Philadelphia
[17] B. Després, P. Joly, J. E. Roberts, 1992, A domain decomposition method for the harmonic Maxwell’s equations, IMACS International Symposium on Iterative Methods in Linear Algebra, R. BeauwensP. de Groen, 475, North-Holland, Amsterdam
[18] Bruno, Despres, 1994, Implementation of a non overlapping domain decomposition method on a Cray t3d, for solving the 3d harmonic Maxwell’s equations, International Symposium on Maxwell’s Equations, IMA
[19] Douglas, J.; Paes Leme, P.J.; Roberts, J.E.; Wang, J., A parallel iterative procedure applicable to the approximate solution of second order partial differential equations by mixed finite element methods, Numer. math., 65, 95, (1993) · Zbl 0813.65122
[20] Ernst, O.; Golub, G., A domain decomposition approach to solving the Helmholtz equation with a radiation boundary condition, (), 177 · Zbl 0811.65109
[21] Fix, G.J.; Marine, S.P., Variational methods for underwater acoustic problems, J. comp. phys., 28, 253, (1978) · Zbl 0384.76048
[22] Roberts, J.E.; Chavent, G., A unified physical presentation of mixed, mixed-hybrid finite elements and usual finite differences for the determination of velocities in waterflow problems, Adv. water resources, 14, 329, (1991)
[23] J. Paoli, G. Roge, C. Bardos, Maı̂trise du champ rétrodiffusé par une méthode de contrôle optimal
[24] Givoli, D., Non reflecting boundary conditions, J. comp. phys., 94, 1, (1991) · Zbl 0731.65109
[25] Givoli, D.; Keller, J.B., Exact nonreflecting boundary conditions, J. comp. phys., 82, 172, (1989) · Zbl 0671.65094
[26] Goldstein, C.I., The finite element method with non uniform mesh sizes applied to the exterior Helmholtz problem, Numer. math., 38, 61, (1981) · Zbl 0445.65102
[27] Goldstein, C.I., A finite element method for solving Helmholtz type equations in wave guides and other unbounded domains, Math. comp., 39, 309, (1982) · Zbl 0493.65046
[28] Hagstrom, T.; Keller, H.B., Asymptotic boundary conditions and numerical methods for non linear elliptic problems in unbounded domains, Math. comput., 48, 449, (1987) · Zbl 0627.65120
[29] J. E. Santos, J. Douglas, F. Pereira, 1995, A parallelizable approach to the simulation of waves in dispersive media, Third International Conference on Mathematical and Numerical Wave Propagation Phenomena, G. Cohen, 673, SIAM, Philadelphia · Zbl 0879.73081
[30] Lions, J.L., Contrôlabilité exacte perturbations et stabilisation de systèmes distribués, (1988), Masson Paris · Zbl 0653.93002
[31] P. L. Lions, 1990, On the Schwarz alternating method, 3, Third International Symposium on Domain Decomposition Methods for Partial Differential Equations, T. F. ChanR. GlowinskiJ. PériauxO. B. Widlund, 202, SIAM, Philadelphia
[32] P. Joly, M. Invernizzi, F. Collino, A. Piacentini, 1995, A new transmission operator in the domain decomposition for the maxwell equations, ECNUM
[33] Nedelec, J.C., Curved finite element methods for the solution of singular integral equations on surfaces onR^n, Comp. methods appl. mech. engrg., 8, 61, (1971) · Zbl 0333.45015
[34] Nedelec, J.C., A new family of mixed finite elements inr3, Numer. math., 50, 57, (1986) · Zbl 0625.65107
[35] Poirier, C.; Joly, P., Mathematical analysis of electromagnetic open waveguides, M2an, 29, 505, (1995) · Zbl 0834.35126
[36] Lions, J.L.; Dautray, R., Analyse mathématique et calcul numérique pour LES sciences et techniques, (1985), Masson Paris
[37] Rappaport, C.M., Perfectly matched absorbing boundary conditions based on anisotropic lossy mapping of space, IEEE microwave guided wave lett., 5, (1995)
[38] P. Joly, S. Ghanemi, F. Collino, 1995, Domain decomposition method for harmonic wave equations, Third International Conference on Mathematical and Numerical Wave Propagation Phenomena (Cannes-Mandelieu), G. Cohen, 663, SIAM, Philadelphia · Zbl 0870.65109
[39] Stratton, J.A., Electromagnetic theory, (1941), McGraw-Hill New York · Zbl 0022.09303
[40] Ogorodnikov, E.I.; Shaidurov, V.V., Some numerical method of solving Helmholtz wave equation, Mathematical and numerical aspects of wave propagation phenomena, (1991), SIAM Philadelphia, p. 73-
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.