zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A domain decomposition method for the Helmholtz equation and related optimal control problems. (English) Zbl 0884.65118
A domain decomposition method (splitting the domain into smaller sub-domains and solving a sequence of similar sub-problems on these sub-domains) is described for the exterior Helmholtz equation with the lowest order absorbing boundary condition and for its extension to optimal control problems governed by this equation. The transmission conditions (interface conditions) are reformulated as mixed (Robin) boundary conditions to assert the problem being well-posed. A Helmholtz adaption of the Schwarz algorithm for elliptic problems [cf. {\it P. L. Lions}, in: T. F. Chan et el. (ed.), Third Int. Symp. Domain Decomp. Meth., SIAM, Philadelphia, 202-223 (1990; Zbl 0704.65090)] is defined to ensure the transmission conditions through an iterative technique. At each step of that iterative procedure the resolution of each sub-problem is explicit. A slight modification by introduction of a relaxation parameter improves the convergence. All these techniques are repeated and generalized to linear optimal control problems, especially to those with non-local cost functions. Detailed hints to further problems [e.g. wave guides, relations to the method of perfectly matched layers, cf. {\it J.-P. Berenger}, J. Comput. Phys. 114, No. 2, 185-200 (1994; Zbl 0814.65129)] are given. The numerical example found in the paper is convincing: a plane wave, arriving an annular resonator (with an open section of angle $\pi /8$), showing the scattered field with multiple reflections inside of the hard resonator, and the optimal control solution where the reflection is killed inside of the resonator. In the example each finite element is taken to be a sub-domain in the decomposition, thus, the algorithm reduces to explicit formulae (and transmission of data). Massively parallel strategy has been applied [cf. the first author in D. H. Bailey et al. (ed.), Seventh SIAM Conf. Parallel Proc. San Francisco, 90-95 (1995; Zbl 0836.65083)].

MSC:
65N55Multigrid methods; domain decomposition (BVP of PDE)
65F10Iterative methods for linear systems
65N30Finite elements, Rayleigh-Ritz and Galerkin methods, finite methods (BVP of PDE)
65N12Stability and convergence of numerical methods (BVP of PDE)
35J05Laplacian operator, reduced wave equation (Helmholtz equation), Poisson equation
WorldCat.org
Full Text: DOI
References:
[1] Bayliss, A.; Turkel, E.: Radiation boundary conditions for wave like equations. Comm. pure appl. Math. 33, 707 (1980) · Zbl 0438.35043
[2] J. D. Benamou, 1995, A domain decomposition method for the optimal control of system governed by the Helmholtz equation, Third International Conference on Mathematical and Numerical Wave Propagation Phenomena, 653, SIAM, Philadelphia · Zbl 0870.65051
[3] J. D. Benamou, 1995, A massively parallel algorithm for the optimal control of systems governed by elliptic p.d.e.’s, Seventh SIAM Conference on Parallel Processing for Scientific Computing, San Francisco, SIAM, Philadelphia · Zbl 0836.65083
[4] Benamou, J. D.: Domain decomposition methods with coupled transmission conditions for the optimal control of systems governed by elliptic partial differential equations. SIAM J. Numer. anal. 33 (1996) · Zbl 0916.49024
[5] Berenger, J.: A perfectly matched layer for the absorption of electromagnetic waves. J. comp. Phys. 114, 185 (1994) · Zbl 0814.65129
[6] Bouche, D.; Molinet, F.: Méthodes asymptotiques en électromagnétisme. (1989)
[7] Cai, X. -C.; Widlund, O. B.: Domain decomposition algorithm for indefinite elliptic problems. SIAM J. Sci. stat. Comput. 13, 243 (1992) · Zbl 0746.65085
[8] Cai, X. -C.; Widlund, O. B.: Multiplicative algorithms for some nonsymmetric and indefinite problems. SIAM J. Numer. anal. 30, 936 (1993) · Zbl 0787.65016
[9] Cessenat, O.; Despres, B.: Une nouvelle formulation variationnelle des équations d’ondes en fréquence. Application au problème de Helmholtz 2d. Technical report 2779 (1994)
[10] F. Collino, Perfectly matched absorbing layers for the paraxial equations, J. Comp. Phys. · Zbl 0866.73013
[11] F. Collino, P. Monk, The perfectly matched layer in curvilinear coordinates, SIAM J. Sci. Comput. · Zbl 0940.78011
[12] Colton, D.; Kress, R.: Integral equation method in scattering. (1983) · Zbl 0522.35001
[13] Colton, C.; Kress, R.: Inverse acoustic and electromagetic scattering theory. (1992) · Zbl 0760.35053
[14] De La Bourdonnaye, A.: A substructuring method for a harmonic wave propagating problem: analysis of the conditioning number of the problem on the interfaces. Technical report 95-35 (1995)
[15] B. Després, 1991, Méthodes de décomposition de domaine pour les problèmes de propagation d’ondes en régimes harmoniques
[16] B. Després, 1993, Domain decomposition method and the Helmholtz problem, ii, Second International Conference on Mathematical and Numerical Aspects of Wave Propagation Phenomena, R. KleinmanT. AngellD. ColtonF. SantosaI. Stackgold, 197, SIAM, Philadelphia
[17] B. Després, P. Joly, J. E. Roberts, 1992, A domain decomposition method for the harmonic Maxwell’s equations, IMACS International Symposium on Iterative Methods in Linear Algebra, R. BeauwensP. de Groen, 475, North-Holland, Amsterdam
[18] Bruno, Despres, 1994, Implementation of a non overlapping domain decomposition method on a Cray t3d, for solving the 3d harmonic Maxwell’s equations, International Symposium on Maxwell’s Equations, IMA
[19] Douglas, J.; Leme, P. J. Paes; Roberts, J. E.; Wang, J.: A parallel iterative procedure applicable to the approximate solution of second order partial differential equations by mixed finite element methods. Numer. math. 65, 95 (1993) · Zbl 0813.65122
[20] Ernst, O.; Golub, G.: A domain decomposition approach to solving the Helmholtz equation with a radiation boundary condition. Domain decomposition methods in science and engineering, 177 (1992)
[21] Fix, G. J.; Marine, S. P.: Variational methods for underwater acoustic problems. J. comp. Phys. 28, 253 (1978) · Zbl 0384.76048
[22] Roberts, J. E.; Chavent, G.: A unified physical presentation of mixed, mixed-hybrid finite elements and usual finite differences for the determination of velocities in waterflow problems. Adv. water resources 14, 329 (1991)
[23] J. Paoli, G. Roge, C. Bardos, Maı\hat{}trise du champ rétrodiffusé par une méthode de contrôle optimal
[24] Givoli, D.: Non reflecting boundary conditions. J. comp. Phys. 94, 1 (1991) · Zbl 0731.65109
[25] Givoli, D.; Keller, J. B.: Exact nonreflecting boundary conditions. J. comp. Phys. 82, 172 (1989) · Zbl 0671.65094
[26] Goldstein, C. I.: The finite element method with non uniform mesh sizes applied to the exterior Helmholtz problem. Numer. math. 38, 61 (1981) · Zbl 0445.65102
[27] Goldstein, C. I.: A finite element method for solving Helmholtz type equations in wave guides and other unbounded domains. Math. comp. 39, 309 (1982) · Zbl 0493.65046
[28] Hagstrom, T.; Keller, H. B.: Asymptotic boundary conditions and numerical methods for non linear elliptic problems in unbounded domains. Math. comput. 48, 449 (1987) · Zbl 0627.65120
[29] J. E. Santos, J. Douglas, F. Pereira, 1995, A parallelizable approach to the simulation of waves in dispersive media, Third International Conference on Mathematical and Numerical Wave Propagation Phenomena, G. Cohen, 673, SIAM, Philadelphia · Zbl 0879.73081
[30] Lions, J. L.: Contrôlabilité exacte perturbations et stabilisation de systèmes distribués. (1988)
[31] P. L. Lions, 1990, On the Schwarz alternating method, 3, Third International Symposium on Domain Decomposition Methods for Partial Differential Equations, T. F. ChanR. GlowinskiJ. PériauxO. B. Widlund, 202, SIAM, Philadelphia
[32] P. Joly, M. Invernizzi, F. Collino, A. Piacentini, 1995, A new transmission operator in the domain decomposition for the maxwell equations, ECNUM
[33] Nedelec, J. C.: Curved finite element methods for the solution of singular integral equations on surfaces onrn. Comp. methods appl. Mech. engrg. 8, 61 (1971)
[34] Nedelec, J. C.: A new family of mixed finite elements inr3. Numer. math. 50, 57 (1986) · Zbl 0603.65069
[35] Poirier, C.; Joly, P.: Mathematical analysis of electromagnetic open waveguides. M2an 29, 505 (1995) · Zbl 0834.35126
[36] Lions, J. L.; Dautray, R.: Analyse mathématique et calcul numérique pour LES sciences et techniques. (1985) · Zbl 0642.35001
[37] Rappaport, C. M.: Perfectly matched absorbing boundary conditions based on anisotropic lossy mapping of space. IEEE microwave guided wave lett. 5 (1995)
[38] P. Joly, S. Ghanemi, F. Collino, 1995, Domain decomposition method for harmonic wave equations, Third International Conference on Mathematical and Numerical Wave Propagation Phenomena (Cannes--Mandelieu), G. Cohen, 663, SIAM, Philadelphia · Zbl 0870.65109
[39] Stratton, J. A.: Electromagnetic theory. (1941) · Zbl 67.1119.01
[40] Ogorodnikov, E. I.; Shaidurov, V. V.: Some numerical method of solving Helmholtz wave equation. (1991)