×

Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance. (English) Zbl 0885.35121

Summary: A unified framework for equations of Ginzburg-Landau and Cahn-Hilliard type is developed using, as a basis, a balance law for microforces in conjunction with constitutive equations consistent with a mechanical version of the second law.

MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)
74A15 Thermodynamics in solid mechanics
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Chan, S.-K., Steady-state kinetics of diffusionless first order phase transformations, J. Chem. Phys., 67, 5755-5762 (1977)
[2] Landau, L. D.; Khalatnikov, I. M., On the theory of superconductivity, (Ter Haar, D., Collected Papers of L.D. Landau (1965), Pergamon: Pergamon Oxford) · Zbl 0072.44601
[3] Allen, S. M.; Cahn, J. W., A macroscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metall., 27, 1085-1095 (1979)
[4] Cahn, J. C., On spinodal decomposition, Acta Metall., 9, 795-801 (1961)
[5] Penrose, O.; Fife, P. C., Thermodynamically consistent models of phase-field type for the kinetics of phase transitions, Physica D, 43, 44-62 (1990) · Zbl 0709.76001
[6] Schofield, S. A.; Oxtoby, D. W., Diffusion allowed crystal growth. 1. Landau-Ginzburg model, J. Chem. Phys., 94, 2176-2186 (1991)
[7] Hohenberg, P. C.; Halperin, B. I., Theory of dynamic critical phenomena, Rev. Mod. Phys., 49, 435-479 (1977)
[8] Fried, E.; Gurtin, M. E., Continuum theory of thermally induced phase transitions based on an order parameter, Physica D, 68, 326-343 (1993) · Zbl 0793.35049
[9] Fried, E.; Gurtin, M. E., Dynamic solid-solid phase transitions with phase characterized by an order parameter, Physica D, 72, 287-308 (1994) · Zbl 0812.35164
[10] Larché, F. C.; Cahn, J. C., The interaction of composition and stress in crystalline solids, Acta Metall., 33, 331-357 (1985)
[11] Truesdell, C. A.; Noll, W., The non-linear field theories of mechanics, (Flugge, S., Handbuch der Physik, III/3 (1965), Springer: Springer Berlin) · Zbl 0779.73004
[12] Coleman, B. D.; Noll, W., The thermodynamics of elastic materials with heat conduction and viscosity, Arch. Rat. Mech. Anal., 13, 245-261 (1963)
[13] Gurtin, M. E., On the nonequilibrium thermodynamics of capillarity and phase, O. Appl. Math., 47, 129-145 (1989) · Zbl 0704.35129
[14] Aifantes, E. C., On the problem of diffusion in solids, Acta Mech., 37, 265-296 (1980) · Zbl 0447.73002
[15] Stephenson, G. B., Spinodal decomposition in amorphous systems, J. Non-Crystall. Sol., 66, 393-427 (1984)
[16] Durning, C. J., Differential sorption in viscoelastic fluids, J. Poly. Sci.: Poly. Phys. Ed., 23, 1831-1855 (1985)
[17] Jäckle, J.; Frisch, H. L., Relaxation of chemical potential and a generalized diffusion equation, Differential sorption in viscoelastic fluids, J. Poly. Sci.: Poly. Phys. Ed., 23, 675-682 (1985)
[18] Jäckle, J.; Frisch, H. L., Properties of a generalized diffusion equation with memory, J. Chem. Phys., 85, 1621-1627 (1986)
[19] Binder, K.; Frisch, H. L.; Jäckle, J., Kinetics of phase separation in the presence of slowly relaxing structural variables, J. Chem. Phys., 85, 1505-1512 (1986)
[20] Novick-Cohen, A.; Pego, R. L., Stable patterns in a viscous diffusion equation, Trans. Am. Math. Soc., 324, 331-351 (1991) · Zbl 0738.35035
[21] Onuki, A., Ginzburg-Landau approach to elastic effects in the phase separation of solids, J. Phys. Soc. Jpn., 58, 3065-3068 (1989)
[22] Onuki, A., Long-range interactions through elastic fields in phase-separating solids, J. Phys. Soc. Jpn., 58, 3069-3072 (1989)
[23] Nishimori, H.; Onuki, A., Pattern formation in phase-separating alloys with cubic symmetry, Phys. Rev. B, 42, 980-983 (1990)
[24] Nishimori, H.; Onuki, A., Freezing of domain growth in cubic solids with elastic misfit, J. Phys. Soc. Jpn., 60, 1208-1211 (1991)
[25] Cahn, J. C., On spinodal decomposition in cubic crystals, Acta Metall., 10, 179-183 (1962)
[26] Larché, F. C.; Cahn, J. C., Phase changes in a thin plate with non-local self-stress effects, Acta Metall., 40, 947-955 (1992)
[27] Larché, F. C.; Cahn, J. C., Thermochemical equilibrium of multiphase solids under stress, Acta Metall., 26, 1579-1589 (1978)
[28] Gurtin, M. E., An Introduction to Continuum Mechanics (1981), Academic Press: Academic Press New York · Zbl 0559.73001
[29] Truesdell, C.; Toupin, R. A., The Classical Field Theories, (Handbuch der Physik III/1 (1960), Springer: Springer Berlin)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.